Search results for "Induction motor"
showing 10 items of 130 documents
Fault Diagnostics for Electrically Operated Pitch Systems in Offshore Wind Turbines
2016
This paper investigates the electrically operated pitch systems of offshore wind turbines for online condition monitoring and health assessment. The current signature based fault diagnostics is developed for electrically operated pitch systems using model-based approach. The electrical motor faults are firstly modelled based on modified winding function theory and then, current signature analysis is performed to detect the faults. Further, in order to verify the fault diagnostics capabilities in realistic conditions, the operating profiles are obtained from FAST simulation of offshore wind turbines in various wind conditions. In this way, the applicability of current signature analysis for …
Bearing fault diagnosis for inverter-fed motors via resonant filters
2014
Current-based technique is an economic solution to detect bearing faults in drive-trains. Localized faults produce characteristic vibration frequencies. When an electric motor is supplied by a frequency-converter, the current response includes not only the fundamental and fault related frequencies but also higher harmonics from the inverter. This paper introduces a resonant filter to pick up frequency components caused by the localized faults. The bearing fault frequencies are calculated by bearing geometry and motor speeds. The filter frequencies are selected as a function of motor speeds. The filter is independent of the load condition, so it can work at different motor operating points t…
Experimental comparison between direct and indirect measurement techniques for the characterization of Linear Induction Motors
1997
Abstract An experimental comparison between direct and indirect measurement techniques for the on-line characterization of Linear Induction Motors (LIMs) is presented. Indirect measurements are based on a mathematical model of the motors. Direct measurements are carried out by means of traditional instruments and a smart sensor, located on the LIM and linked to the controller by the power supply line. Both a synthetic description of the LIM model and the sensor architecture are reported. The experimental results, achieved by applying different feeding strategy, are discussed.
A Contribution to Tests Standardization for Inverter-Fed Asynchronous Machines
1986
Losses of inverter-fed asynchronous motors and their experimental evaluation are considered. The formal expressions of iron and copper losses are first recalled, and it is shown as they are influenced by the harmonic content of inverter output voltages. Theoretical and experimental values of these losses are then given together with the presentation of the experimental tests used for their determination. A suitable set of tests is then suggested for the determination of the conventional efficiency of inverter-fed asynchronous motors. The content cannot be considered exhaustive on the matter. It represents only a first contributive approach to the standardization of inverter-fed asynchronous…
Torque peak reduction and overload monitoring of induction motors in offshore drilling operations
2015
Current drivetrain design procedures for electric actuation systems operating in offshore conditions typically consider two major requirements: to provide sufficient steady-state and maximum motor torques. As a result of this, no information regarding the transient state (e.g. during motor acceleration) is utilized when selecting drivetrain components. This leads to potentially dangerous situations when motors undergo saturation in these regions due to too high dynamic loads. A common reason for this (apart from lack of information about transient state when designing a drivetrain) is applying trapezoidal reference motion profiles that cause discontinuities in system acceleration and infini…
A Two-Stage Fault Detection and Classification Scheme for Electrical Pitch Drives in Offshore Wind Farms Using Support Vector Machine
2019
Pitch systems are one of the components with the most frequent failure in wind turbines. This paper presents a two-stage fault detection and classification scheme for electric motor drives in wind turbine pitch systems. The presented approach is suitable for application in offshore wind farms with electric pitch systems driven by induction motors as well as permanent magnet synchronous motors. The adopted strategy utilizes three-phase motor current sensing at the pitch drives for fault detection and only when a fault condition is detected at this stage, features extracted from the current signals are transmitted to a support vector machine classifier located centrally to the wind farm. The …
Automatic detection of thermal anomalies in induction motors
2021
The paper proposes a methodology based on Artificial Intelligence techniques for the automatic detection of abnormal thermal distributions in electric motors, to rapidly identify pre-faults or fault conditions. The proposed approach, applied to induction motors of different sizes, installed in waterworks plants, is based on the execution of Thermographic Non-Destructive Tests, which allow identifying abnormal operating conditions without interrupting the ordinary working conditions of the system. Thermographic images of induction motors are acquired at the installation site and with perspectives visible to the operator, which are sometimes partially obstructed. These thermographic images ar…
Dynamical Compensation of the Load Torque in a High-Performance Electrical Drive with an Induction Motor
2018
This paper describes a new method for dynamical estimation of load disturbance in induction motors by using Nonlinear Unknown Input Observers (NUIO). This estimation is then used to compensate dynamically the load torque in a Field Oriented Control (FOC) induction motor drive to increase its load-rejection capability. The method has been verified both in simulation and experimentally on a experimental rig.
Sensorless variable speed single-phase induction motor drive system based on direct rotor flux orientation
2012
The single-phase induction motor (SPIM) is one of the electrical machines more used in the World, and can be found in several fractional and sub-fractional horsepower applications in houses, offices, shoppings, farms, and industries. The introduction of more sophisticated applications has required the use of variable speed drives for SPIM, where the adoption of sensorless techniques is the more reasonable option for speed control due to the low cost of this electrical machine. A proposal for sensorless variable speed SPIM drive based on direct rotor field orientation techniques is presented in this paper. None transformation is used in order to eliminate the asymmetry of the stator windings…
Robust Active Disturbance Rejection Control of Induction Motor Systems Based on Additional Sliding-Mode Component
2017
This paper deals with motion control systems with induction motor, subject to severe requirements on both dynamics and steady-state behavior. The proposed control methodology could be viewed as an advancement of the standard field oriented control. It consists of two control loops, i.e., the rotor flux and the speed control loops, designed using the active disturbance rejection control method, with the aim to cope with both exogenous and endogenous disturbances, which are estimated by means of two linear extended state observers and then compensated. Moreover, with the aim of achieving total robustness, a sliding-mode based component is designed, in order to take into account disturbance es…