Search results for "Inductive coupling"

showing 10 items of 42 documents

Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits

2016

The Jordan-Wigner transformation maps a one-dimensional spin-1/2 system onto a fermionic model without spin degree of freedom. A double chain of quantum bits with XX and ZZ couplings of neighboring qubits along and between the chains, respectively, can be mapped on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate the quantum properties of this model. We analyze physical implementations of such analog quantum simulators, including one based on transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive interaction. We propose protocols to gain confidence in the results of the simulation through measu…

PhysicsQuantum PhysicsHubbard modelCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityQuantum simulatorFOS: Physical sciences02 engineering and technologyTransmon021001 nanoscience & nanotechnology01 natural sciencesInductive couplingSuperconductivity (cond-mat.supr-con)Quantum mechanicsQubit0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologySuperconducting quantum computingQuantum Physics (quant-ph)QuantumSpin-½
researchProduct

Decoherence from dipolar interspin interactions in molecular spin qubits

2019

The realization of spin-based logical gates crucially depends on magnetically coupled spin qubits. Thus, understanding decoherence when spin qubits are in close proximity will become a roadblock to overcome. Herein, we propose a method free of fitting parameters to evaluate the qubit phase memory time ${T}_{m}$ in samples with high electron spin concentrations. The method is based on a model aimed to estimate magnetic nuclear decoherence [P. C. E. Stamp and I. S. Tupitsyn, Phys. Rev. B 69, 014401 (2004)]. It is applied to a ground-spin $J=8$ magnetic molecule 1 displaying atomic clock transitions, namely ${{[\mathrm{H}{\mathrm{o}}^{\mathrm{III}}{({\mathrm{W}}_{5}{\mathrm{O}}_{18})}_{2}]}^{9…

PhysicsQuantum decoherenceCondensed matter physicsQuàntums Teoria dels02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesInductive couplingAtomic clockDipoleQubit0103 physical sciencesMolecule010306 general physics0210 nano-technologyHigh electronPhysical Review B
researchProduct

Exact solution of the 1D Hubbard model in the atomic limit with inter-site magnetic coupling

2012

In this paper we present for the first time the exact solution in the narrow-band limit of the 1D extended Hubbard model with nearest-neighbour spin-spin interactions described by an exchange constant J. An external magnetic field h is also taken into account. This result has been obtained in the framework of the Green's functions formalism, using the Composite Operator Method. By means of this theoretical background, we have studied some relevant features such as double occupancy, magnetization, spin-spin and charge-charge correlation functions and derived a phase diagram for both ferro (J>0) and anti-ferro (J<0) coupling in the limit of zero temperature. We also report a study on de…

PhysicsStrongly Correlated Electrons (cond-mat.str-el)Statistical Mechanics (cond-mat.stat-mech)Specific heatCondensed matter physicsHubbard modelFOS: Physical sciencesCondensed Matter PhysicsInductive couplingElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter - Other Condensed MatterCondensed Matter - Strongly Correlated ElectronsMagnetizationExact solutions in general relativityDensity of statesCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Statistical MechanicsOther Condensed Matter (cond-mat.other)Phase diagramThe European Physical Journal B
researchProduct

Electric field controllable magnetic coupling of localized spins mediated by itinerant electrons: a toy model

2017

In this paper, we propose a toy model to describe the magnetic coupling between the localized spins mediated by the itinerant electron in partially delocalized mixed-valence (MV) systems. This minimal model takes into account the key interactions that are common for all such systems, namely, electron transfer in the valence-delocalized moiety and magnetic exchange between the localized spins and the delocalized electrons. The proposed descriptive model is exactly solvable which allows us to qualitatively and quantitatively discuss the main features of the whole class of partially delocalized MV systems. In the case of relatively strong exchange coupling, the combined action of these two int…

PhysicsToy modelSpinsCondensed matter physicsSpintronicsGeneral Physics and Astronomy02 engineering and technologyElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesInductive coupling0104 chemical sciencesDelocalized electronsymbols.namesakeElectric fieldQuantum mechanicssymbolsPhysical and Theoretical Chemistry0210 nano-technologyHamiltonian (quantum mechanics)Physical Chemistry Chemical Physics
researchProduct

Magnetic Domain Imaging with a Photoemission Microscope

1997

ABSTRACTPhotoelectron emission microscopy (PEEM) has proven to be a versatile analytical technique in surface science. When operated with circularly polarized light in the soft x-ray regime, however, photoemission microscopy offers a unique combination of magnetic and chemical information. Exploiting the high brilliance and circular polarization available at a helical undulator beamline, the lateral resolution in the imaging of magnetic domain structures may be pushed well into the sub-micrometer range. Using a newly designed photoemission microscope we show that under these circumstances not only domains, but also domain walls can be selectively investigated. The high sensitivity of the te…

Scanning Hall probe microscopeMicroscopeMaterials scienceMagnetic domainbusiness.industryAnalytical techniqueUndulatorInductive couplinglaw.inventionlawOptoelectronicsMagnetic force microscopebusinessCircular polarizationMRS Proceedings
researchProduct

Inner Edge Drag by an Asynchronous Primary and Accretion Disc Structure In Close Binaries

1996

In this work a 3-D ‘Smoothed Particle Hydrodynamics’ ([1]; [4]; [5]) accretion disc is simulated where particles at its inner edge are dragged by a fast spinning compact central star, as in the case of the intermediate polars. The angular velocity of the central star is twice the orbital angular velocity w 0. This drag can be attributed mainly to viscous interaction in the dense compact star atmosphere, although magnetic coupling may also play a role.

Smoothed-particle hydrodynamicsPhysicsPrimary (astronomy)DragAstrophysics::Solar and Stellar AstrophysicsAngular velocityAstrophysics::Earth and Planetary AstrophysicsAstrophysicsEdge (geometry)Compact starStar (graph theory)Inductive couplingAstrophysics::Galaxy Astrophysics
researchProduct

Very Long-Distance Magnetic Coupling in a Dicopper(II) Metallacyclophane with Extended π-Conjugated Diphenylethyne Bridges

2011

Self-assembly of the rigid rodlike ligand N,N'-4,4'-diphenylethynebis(oxamate) (dpeba) and Cu(2+) ions affords a novel dinuclear copper(II) metallacyclophane (nBu(4)N)(4)[Cu(2)(dpeba)(2)]·4MeOH·2Et(2)O (1) featuring a very long intermetallic distance (r = 15.0 Å). Magnetic susceptibility measurements for 1 reveal a moderately weak but nonnegligible intramolecular antiferromagnetic coupling between the two metal centers across the double para-substituted diphenylethynediamidate bridge (J = -3.9 cm(-1); H = -JS(1)S(2), where S(1) = S(2) = S(Cu) = (1)/(2)). Density functional electronic structure calculations on 1 support the occurrence of a spin polarization mechanism.

Spin polarizationChemistryLigandIntermetallicchemistry.chemical_elementElectronic structurePhotochemistryInductive couplingCopperMagnetic susceptibilityInorganic ChemistryCrystallographyIntramolecular forcePhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Solid‐State Anion–Guest Encapsulation by Metallosupramolecular Capsules Made from Two Tetranuclear Copper(II) Complexes

2007

A new cationic tetranuclear copper(II) complex self-assembles from one 1,3-phenylenebis(oxamato) (mpba) bridging ligand and four CuII ions partially blocked with N,N,N′,N′-tetramethylethylenediamine (tmen) terminal ligands. In the solid state, two of these tetracopper(II) oxamato complexes of bowl-like shape and helical conformation then serve as a building block for the generation of either hetero- (MP) or homochiral (MM/PP) dimeric capsules depending on the nature of the encapsulated anion guest, perchlorate or hexafluorophosphate. The overall magnetic behaviour of these metallosupramolecular capsules does not depend on the nature of the encapsulated anion guest, but it is consistent with…

Stereochemistry010405 organic chemistrySolid-stateCationic polymerizationchemistry.chemical_elementBridging ligand[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistryCopperInductive coupling01 natural sciencesIon0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundPerchloratechemistryHexafluorophosphateEuropean Journal of Inorganic Chemistry
researchProduct

Ab initio calculations of the transfer parameters and coulombic repulsion and estimation of their effects on the electron delocalization and magnetic…

2003

International audience; In this work, we present ab initio calculations on embedded fragments that permit to extract the value of the effective electron transfer integral and coulombic repulsion between W nearest neighbour atoms in a mixed-valence αPW12O40 Keggin polyoxoanion. This allows us to perform a quantitative study of the influence of these two parameters on the magnetic properties of Keggin polyoxoanions reduced by two electrons. We surprisingly find that the electron transfer between edge-sharing and corner-sharing WO6 octahedra have very close values, and show that the punctual charges estimation of coulombic repulsion may not be accurate enough to study the electronic distributi…

Valence (chemistry)010405 organic chemistryChemistryElectron010402 general chemistry01 natural sciencesInductive couplingMolecular physics0104 chemical sciencesIonInorganic Chemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryElectron transfersymbols.namesakeAb initio quantum chemistry methodsMaterials ChemistrysymbolsDiamagnetismPhysical and Theoretical ChemistryAtomic physicsHamiltonian (quantum mechanics)
researchProduct

Electrically switchable magnetic molecules: inducing a magnetic coupling by means of an external electric field in a mixed-valence polyoxovanadate cl…

2015

International audience; Herein we evaluate the influence of an electric field on the coupling of two delocalized electrons in the mixed-valence polyoxometalate (POM) [GeV14 O40 ](8-) (in short V14 ) by using both a t-J model Hamiltonian and DFT calculations. In absence of an electric field the compound is paramagnetic, because the two electrons are localized on different parts of the POM. When an electric field is applied, an abrupt change of the magnetic coupling between the two delocalized electrons can be induced. Indeed, the field forces the two electrons to localize on nearest-neighbors metal centers, leading to a very strong antiferromagnetic coupling. Both theoretical approaches have…

Valence (chemistry)SpintronicsCondensed matter physicsChemistryOrganic ChemistrySpin transitionGeneral ChemistryElectronInductive couplingCatalysis[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryParamagnetismDelocalized electronNuclear magnetic resonanceElectric field
researchProduct