Search results for "Industrial Biotechnology"
showing 10 items of 730 documents
Decentralized Adaptive Control for Interconnected Nonlinear Systems with Input Quantization
2017
Abstract In this paper, a decentralized adaptive control scheme is proposed for a class of uncertain nonlinear interconnected systems with input quantization. A hysteresis uniform quantization is introduced to reduce chattering. In the control design, a smooth function is introduced with backstepping technique to compensate for the effects of interactions. It is shown that the proposed decentralized adaptive controllers can ensure global boundedness of all the signals in the closed-loop interconnected systems and the tracking errors of subsystem converge to a residual, which can be adjusted by choosing suitable design parameters. Simulation results illustrate the effectiveness of the propos…
Adaptive Backstepping Control of Nonlinear Uncertain Systems With Quantized States
2019
This paper investigates the stabilization problem for uncertain nonlinear systems with quantized states. All states in the system are quantized by a static bounded quantizer, including uniform quantizer, hysteresis-uniform quantizer, and logarithmic-uniform quantizer as examples. An adaptive backstepping-based control algorithm, which can handle discontinuity, resulted from the state quantization and a new approach to stability analysis are developed by constructing a new compensation scheme for the effects of the state quantization. Besides showing the global ultimate boundedness of the system, the stabilization error performance is also established and can be improved by appropriately adj…
Adaptive Feedforward Control of a Pressure Compensated Differential Cylinder
2020
This paper presents the design, simulation and experimental verification of adaptive feedforward motion control for a hydraulic differential cylinder. The proposed solution is implemented on a hydraulic loader crane. Based on common adaptation methods, a typical electro-hydraulic motion control system has been extended with a novel adaptive feedforward controller that has two separate feedforward states, i.e, one for each direction of motion. Simulations show convergence of the feedforward states, as well as 23% reduction in root mean square (RMS) cylinder position error compared to a fixed gain feedforward controller. The experiments show an even more pronounced advantage of the proposed c…
Comparison of Model-Based Simultaneous Position and Stiffness Control Techniques for Pneumatic Soft Robots
2020
Soft robots have been extensively studied for their ability to provide both good performance and safe human-robot interaction. In this paper, we present and compare the performance of two model-based control techniques with the common aim to independently and simultaneously control position and stiffness of a pneumatic soft robot’s joint. The dynamic system of a robot arm with flexible joints actuated by a pneumatic antagonistic pair of actuators, so-called McKibben artificial muscles, will be regarded, while its dynamic parameters will be considered imprecise. Simulation results are provided to verify the performance of the algorithms.
Adaptive Control of Quantized Uncertain Nonlinear Systems
2017
Abstract This paper proposes a new adaptive controller for uncertain nonlinear systems in presence of quantized input signal and unknown external disturbance. A hysteresis quantizer is incorporated to reduce chattering phenomenon. By proposing a new transformation of the final control signal, using the sector-bound property of the quantizer and introducing a hyperbolic tangent function, the effects from input quantization and external disturbance are effectively compensated and the Lipschitz condition required for the nonlinear functions in the systems is removed. Besides showing global stability, tracking error performance is also established and can be adjusted by tuning certain design pa…
Making Industrial Robots Smarter with Adaptive Reasoning and Autonomous Thinking for Real-Time Tasks in Dynamic Environments: A Case Study
2018
In order to extend the abilities of current robots in industrial applications towards more autonomous and flexible manufacturing, this work presents an integrated system comprising real-time sensing, path-planning and control of industrial robots to provide them with adaptive reasoning, autonomous thinking and environment interaction under dynamic and challenging conditions. The developed system consists of an intelligent motion planner for a 6 degrees-of-freedom robotic manipulator, which performs pick-and-place tasks according to an optimized path computed in real-time while avoiding a moving obstacle in the workspace. This moving obstacle is tracked by a sensing strategy based on ma-chin…
A laplace type problem for three lattices with non-convex cell
2016
In this paper we consider three lattices with cells represented in Fig. 1, 3 and 5 and we determine the probability that a random segment of constant length intersects a side of lattice. c ⃝2016 All rights reserved.
Mechanical and metallurgical characterization of AA6082-T6 sheet-bulk joints produced through a linear friction welding based approach
2020
In the last decades, new flexible manufacturing processes have been developed to face the demands, by many industrial fields, for highly customized complex functional parts. The peculiar design of these components often overcomes conventional sheet metal and bulk metal forming processes capabilities. In order to face this issue, new hybrid techniques, capable of exploit key advantages of different processes, have to be developed. In this study, a method to obtain sheet-bulk joints, based on the Linear Friction Welding process, is proposed. The feasibility of the technique was investigated through an experimental campaign carried out with varying pressure and oscillation frequency using AA60…
Analysis of Electrical Energy Demands in Friction Stir Welding of Aluminum Alloys
2017
Abstract Manufacturing processes, as used for discrete part manufacturing, are responsible for a substantial part of the environmental impact of products. Despite that, most of metalworking processes are still poorly documented in terms of environmental footprint. To be more specific, the scientific research has well covered conventional machining processes, concerning the other processes there is a lack of knowledge in terms of environmental load characterization instead. The present paper aims to contribute to fill this knowledge gap and an energetic analysis of Friction Stir welding (FSW) is presented. Following the CO2PE! methodological approach, power studies and a preliminary time stu…
UJI RobInLab's approach to the Amazon Robotics Challenge 2017
2017
This paper describes the approach taken by the team from the Robotic Intelligence Laboratory at Jaume I University to the Amazon Robotics Challenge 2017. The goal of the challenge is to automate pick and place operations in unstructured environments, specifically the shelves in an Amazon warehouse. RobInLab's approach is based on a Baxter Research robot and a customized storage system. The system's modular architecture, based on ROS, allows communication between two computers, two Arduinos and the Baxter. It integrates 9 hardware components along with 10 different algorithms to accomplish the pick and stow tasks. We describe the main components and pipelines of the system, along with some e…