Search results for "Inelastic Scattering"

showing 10 items of 592 documents

Study of M1 and E1 excitations by high-resolution proton inelastic scattering measurement at forward angles

2007

Experimental technique for measuring proton inelastic scattering with high‐resolution at 295 MeV and at forward angles including zero degrees is described. The method is useful for extracting spin part of the M1 strength via nuclear excitation as well as E1 strength via Coulomb excitation. An excitation energy resolution of 20 keV, good scattering angle resolution, and low background condition have been achieved. The experimental technique was applied for several sd and pf shell nuclei.

PhysicsProtonScatteringNuclear TheoryResolution (electron density)Coulomb excitationProton emissionMott scatteringInelastic scatteringAtomic physicsExcitationAIP Conference Proceedings
researchProduct

The spin-dependent structure function g1(x) of the proton from polarized deep-inelastic muon scattering

1997

We present a new measurement of the virtual photon proton asymmetry $A_1^{\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\int_{0.003}^{0.7} g_{1}^{\rm p}(x){\rm d}x = 0.139 \pm 0.006~({\rm stat})\pm 0.008~({\rm syst)} \pm 0.006~({\rm evol})$. The value of the first moment $\Gamma_{1}^{\rm p} = \int_{0}^{1} g_{1}^{\rm p}(x){\rm d}x$ of $g_{1}^{\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\rm p}$ at low $x$. We find tha…

PhysicsQuantum chromodynamicsDISNuclear and High Energy PhysicsParticle physicsMuonProtonSMCScatteringg1 structure functionSMC; DIS; g1 structure functionPerturbative QCDDeep inelastic scatteringNuclear physicsSum rule in quantum mechanicsNucleonParticle Physics - ExperimentPhysics Letters B
researchProduct

How to perform QCD analysis of DIS in Analytic Perturbation Theory

2015

We apply (Fractional) Analytic Perturbation Theory (FAPT) to the QCD analysis of the nonsinglet nucleon structure function $F_2(x,Q^2)$ in deep inelastic scattering up to the next leading order and compare the results with ones obtained within the standard perturbation QCD. Based on a popular parameterization of the corresponding parton distribution we perform the analysis within the Jacobi Polynomial formalism and under the control of the numerical inverse Mellin transform. To reveal the main features of the FAPT two-loop approach, we consider a wide range of momentum transfer from high $Q^2\sim 100 {\rm GeV}^2$ to low $Q^2\sim 0.3 {\rm GeV}^2$ where the approach still works.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsMellin transformParticle physicsMomentum transferInverseFOS: Physical sciencesPartonDeep inelastic scatteringsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)symbolsJacobi polynomialsHigh Energy Physics::ExperimentNucleon
researchProduct

Measurement of inclusive jet and dijet production inppcollisions ats=7  TeVusing the ATLAS detector

2012

Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kT algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37 inverse picobarns. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading …

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronPartonHERADeep inelastic scattering7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentInvariant massRapidity010306 general physicsPhysical Review D
researchProduct

Forward J / ψ and D meson nuclear suppression at the LHC

2017

Abstract Using the color glass condensate formalism, we study the nuclear modification of forward J/ψ and D meson production in high energy proton-nucleus collisions at the LHC. We show that relying on the optical Glauber model to obtain the dipole cross section of the nucleus from the one of the proton fitted to HERA DIS data leads to a smaller nuclear suppression than in the first study of these processes in this formalism and a better agreement with experimental data.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114010308 nuclear & particles physicsNuclear TheoryquarkoniaHERABalitsky-Kovchegov equationDeep inelastic scattering01 natural sciencesColor-glass condensateNuclear physicsDipole0103 physical sciencesD mesoncolor glass condensateHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsGlauberNuclear and Particle Physics Proceedings
researchProduct

The spin structure functiong1pof the proton and a test of the Bjorken sum rule

2016

New results for the double spin asymmetry A(1)(p) and the proton longitudinal spin structure function g(1)(p) are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g(1)(p)(x) by about a factor of two in the region x less than or similar to 0.02. A next-to-leading order QCD fit to the g(1) world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, Delta Sigma, ranging from 0.26 to 0.36, and to a…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesHelicityNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentSum rule in quantum mechanics010306 general physicsNucleonSpin-½Physics Letters B
researchProduct

Leading order determination of the gluon polarisation from DIS events with high-pThadron pairs

2013

We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with Q(2) > 1 (GeV/c)(2) including a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised (LiD)-Li-6 target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x(g) covering the range 0.04 < x(g) < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x(g). Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (sy…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsHadronDeep inelastic scattering01 natural sciencesGluonNuclear physics0103 physical sciencesCOMPASS experimentHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Renormalization group evolution of multi-gluon correlators in high energy QCD

2011

Many-body QCD in leading high energy Regge asymptotics is described by the Balitsky-JIMWLK hierarchy of renormalization group equations for the x evolution of multi-point Wilson line correlators. These correlators are universal and ubiquitous in final states in deeply inelastic scattering and hadronic collisions. For instance, recently measured di-hadron correlations at forward rapidity in deuteron-gold collisions at the Relativistic Heavy Ion Collider (RHIC) are sensitive to four and six point correlators of Wilson lines in the small x color fields of the dense nuclear target. We evaluate these correlators numerically by solving the functional Langevin equation that describes the Balitsky-…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsta114010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFOS: Physical sciencesInelastic scatteringRenormalization group01 natural sciencesGluonColor-glass condensateLangevin equationRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsRelativistic Heavy Ion ColliderNuclear ExperimentPhysics Letters B
researchProduct

From deep inelastic scattering to heavy-flavor semi-leptonic decays: Total rates into multi-hadron final states from lattice QCD

2017

We present a new technique for extracting decay and transition rates into final states with any number of hadrons. The approach is only sensitive to total rates, in which all out-states with a given set of QCD quantum numbers are included. For processes involving photons or leptons, differential rates with respect to the non-hadronic kinematics may also be extracted. Our method involves constructing a finite-volume Euclidean four-point function, whose corresponding spectral function measures the decay and transition rates in the infinite-volume limit. This requires solving the inverse problem of extracting the spectral function from the correlator and also necessitates a smoothing procedure…

PhysicsQuantum chromodynamicsParticle physicsFinite volume method010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyHadronLattice field theoryFOS: Physical sciencesLattice QCDQuantum numberDeep inelastic scattering01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsLepton
researchProduct

Sivers Asymmetry for the proton and the neutron

2008

A formalism is presented to evaluate the Sivers function in constituent quark models. A non-relativistic reduction of the scheme is performed and applied to the Isgur-Karl model. The results obtained are consistent with a sizable Sivers effect and the signs for the u and d flavor contributions turn out to be opposite. The Burkardt Sum Rule is fulfilled to a large extent. After the estimate of the QCD evolution of the results from the momentum scale of the model to the experimental one, a reasonable agreement with the available data is obtained. A calculation of nuclear effects in the extraction of neutron single spin asymmetries in semi-inclusive deep inelastic scattering off 3He is also de…

PhysicsQuantum chromodynamicsParticle physicsProtonNuclear Theorymedia_common.quotation_subjectNuclear TheoryConstituent quarkFOS: Physical sciencesDeep inelastic scatteringAsymmetryNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)NeutronSum rule in quantum mechanicsmedia_commonSpin-½Particle Physics - Phenomenology
researchProduct