Search results for "Influenza A Virus"
showing 8 items of 78 documents
Dendritic cell aggresome-like-induced structure formation and delayed antigen presentation coincide in influenza virus-infected dendritic cells.
2005
Abstract Influenza virus infection induces maturation of murine dendritic cells (DCs), which is most important for the initiation of an immune response. However, in contrast to EL-4 and MC57 cells, DCs present viral CTL epitopes with a delay of up to 10 h. This delay in Ag presentation coincides with the up-regulation of MHC class I molecules as well as costimulatory molecules on the cell surface and the accumulation of newly synthesized ubiquitinated proteins in large cytosolic structures, called DC aggresome-like-induced structures (DALIS). These structures were observed previously after LPS-induced maturation of DCs, and it was speculated that they play a role in the regulation of MHC cl…
A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity
2019
Here, we present a potent RNA vaccine approach based on a novel bipartite vector system using trans-amplifying RNA (taRNA). The vector cassette encoding the vaccine antigen originates from an alphaviral self-amplifying RNA (saRNA), from which the replicase was deleted to form a transreplicon. Replicase activity is provided in trans by a second molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA). The latter delivered 10- to 100-fold higher transreplicon expression than the former. Moreover, expression driven by the nrRNA-encoded replicase in the taRNA system was as efficient as in a conventional monopartite saRNA system. We show that the superiority of nrRNA- ov…
Cytokines and Toll-Like Receptors in the Immune Response to Influenza Vaccination
2014
Toll-like receptors (TLRs) are involved in immunogenicity. However, little information is available on the role of TLRs in the immune response to vaccination against influenza virus. The aim of the study was to analyze the relationship between the immunogenic response to influenza vaccine and the presence of soluble forms of TLRs and selected cytokines in the serum. There were two groups of subjects participating in the main protocol of the study: 55 chronically hemodialyzed patients (Group A) and 55 healthy volunteers (Group B) participated in the study. Both groups were vaccinated against influenza using a subunit Agrippal vaccine. The concentrations of human TNF-α, IL-1β/IL-1F2, IL-6, an…
Infection by Influenza Virus in Childhood: A Call for Broader Influenza Vaccination
2004
2014
Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and…
Viroporins, Examples of the Two-Stage Membrane Protein Folding Model
2015
Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding …
The Immunology of Zoonotic Infections
2012
Zoonotic infections are in general defined as infections transmitted from animal to man (and less frequently vice versa), either directly (through contact or contact with animal products) or indirectly (through an intermediate vector as an arthropod or an insect) [1]. Although the burden of zoonotic infections worldwide is major, both in terms of immediate and long-term morbidity and mortality [2, 3] and in terms of emergence/reemergence and socioeconomical, ecological, and political correlations [4], scientific and public health interest and funding for these diseases remain relatively minor. Zoonoses include diseases induced by diverse pathogens (bacteria, viruses, fungi, and parasites), …
Rac1 and PAK1 are upstream of IKK-ε and TBK-1 in the viral activation of interferon regulatory factor-3
2004
The anti-viral type I interferon (IFN) response is initiated by the immediate induction of IFN beta, which is mainly controlled by the IFN-regulatory factor-3 (IRF-3). The signaling pathways mediating viral IRF-3 activation are only poorly defined. We show that the Rho GTPase Rac1 is activated upon virus infection and controls IRF-3 phosphorylation and activity. Inhibition of Rac1 leads to reduced IFN beta promoter activity and to enhanced virus production. As a downstream mediator of Rac signaling towards IRF-3, we have identified the kinase p21-activated kinase (PAK1). Furthermore, both Rac1 and PAK1 regulate the recently described IRF-3 activators, I kappa B kinase- and TANK-binding kina…