Search results for "Information Systems."
showing 10 items of 1545 documents
DRESS: A Distributed RMS Evaluation Simulation Software
2020
Distributed environments consist of a huge number of entities that cooperate to achieve complex goals. When interactions occur between unknown parties, intelligent techniques for estimating agent reputations are required. Reputation management systems (RMS's) allow agents to perform such estimation in a cooperative way. In particular, distributed RMS's exploit feedbacks provided after each interaction and allow prediction of future behaviors of agents. Such systems, in contrast to centralized RMSs, are sensitive to fake information injected by malicious users; thus, predicting the performance of a distributed RMS is a very challenging task. Although many existing works have addressed some c…
Information Abstraction from Crises Related Tweets Using Recurrent Neural Network
2016
Social media has become an important open communication medium during crises. The information shared about a crisis in social media is massive, complex, informal and heterogeneous, which makes extracting useful information a difficult task. This paper presents a first step towards an approach for information extraction from large Twitter data. In brief, we propose a Recurrent Neural Network based model for text generation able to produce a unique text capturing the general consensus of a large collection of twitter messages. The generated text is able to capture information about different crises from tens of thousand of tweets summarized only in a 2000 characters text.
Ranking-Oriented Collaborative Filtering: A Listwise Approach
2016
Collaborative filtering (CF) is one of the most effective techniques in recommender systems, which can be either rating oriented or ranking oriented. Ranking-oriented CF algorithms demonstrated significant performance gains in terms of ranking accuracy, being able to estimate a precise preference ranking of items for each user rather than the absolute ratings (as rating-oriented CF algorithms do). Conventional memory-based ranking-oriented CF can be referred to as pairwise algorithms. They represent each user as a set of preferences on each pair of items for similarity calculations and predictions. In this study, we propose ListCF, a novel listwise CF paradigm that seeks improvement in bot…
Capabilities and Affordances in the ICT4D Context
2019
Part 1: Pushing the Boundaries - New Research Methods, Theory and Philosophy in ICT4D; International audience; The paper examines two concepts that have been frequently used in Information and Communications Technologies for Development (ICT4D) research, capabilities and affordance. We seek to delineate their similarities, their differences, and their accurate application in ICT4D. Both concepts connote a space of opportunities, both are relational between artefact and human agency when applied in ICT4D, and both entail potential rather than actualisation of possibilities. By comparing the two at some length, we hope to generate a more refined understanding of both capabilities and affordan…
Customization Support in Computer-Based Technologies for Autism: A Systematic Mapping Study
2020
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social interaction and communication difficulties, along with narrow and repetitive interests. Being a spectrum dis...
Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging
2017
Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-assisted segmentation approaches are not yet able to address these issues, but rather have the potential to do so. In this paper, a novel automatic prostate MR image segmentation method based on the Fuzzy C-Means (FCM) clustering algorithm, which enables multispectral T1-weighted (T1w) and T2-weighted (T…
A new image segmentation approach using community detection algorithms
2015
Image segmentation has an important role in many image processing applications. Several methods exist for segmenting an image. However, this technique is still a relatively open topic for which various research works are regularly presented. With the recent developments on complex networks theory, image segmentation techniques based on graphs has considerably improved. In this paper, we present a new perspective of image segmentation, by applying three of the most efficient community detection algorithms, Louvain, infomap and stability optimization based on the louvain algorithm, and we extract communities in which the highest modularity feature is achieved. After we show that this measure …
Enter the Serious E-scape Room: A Cost-Effective Serious Game Model for Deep and Meaningful E-learning
2019
Escape rooms are a phenomenon that has taken the world by storm in the last decade. Simultaneously Virtual Reality is a promising technology for innovation in education, training and e-learning. Combining these two concepts, this paper outlines a new model for designing serious games in virtual reality environments for high quality, deep and meaningful learning, the Serious E-scape Room. It describes the theoretical grounding, general guidelines and principles of the model. It also presents the case study “Room of Keys”, a serious virtual escape room for biology concepts. To test the assumptions of the model, researchers conducted a mixed research study with 148 students in a US high school…
Least-squares community extraction in feature-rich networks using similarity data
2021
We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and intensity weight(s) over the network each. Our least-squares additive criterion allows us to search for communities one-by-one and to find each community by adding entities one by one. A focus of this paper is that the feature-space data part is converted into a similarity matrix format. The similarity/link values can be used in either of two modes: (a) as measured in the same scale so that one may …
IntentStreams
2015
The user's understanding of information needs and the information available in the data collection can evolve during an exploratory search session. Search systems tailored for well-defined narrow search tasks may be suboptimal for exploratory search where the user can sequentially refine the expressions of her information needs and explore alternative search directions. A major challenge for exploratory search systems design is how to support such behavior and expose the user to relevant yet novel information that can be difficult to discover by using conventional query formulation techniques. We introduce IntentStreams, a system for exploratory search that provides interactive query refine…