Search results for "Inhomogeneous"
showing 10 items of 33 documents
Ray optics for absorbing particles with application to ice crystals at near-infrared wavelengths
2018
Abstract Light scattering by particles large compared to the wavelength of incident light is traditionally solved using ray optics which considers absorption inside the particle approximately, along the ray paths. To study the effects rising from this simplification, we have updated the ray-optics code SIRIS to take into account the propagation of light as inhomogeneous plane waves inside an absorbing particle. We investigate the impact of this correction on traditional ray-optics computations in the example case of light scattering by ice crystals through the extended near-infrared (NIR) wavelength regime. In this spectral range, ice changes from nearly transparent to opaque, and therefore…
Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium)2PbI4 Perovskite Thin Films: Implications fo…
2021
An outstanding potentiality of layered two-dimensional (2D) organic–inorganic hybrid perovskites (2DHPs) is in the development of solar cells, photodetectors, and light-emitting diodes. In 2DHPs, an exciton is localized in an atomically thin lead(II) halide inorganic layer of sub-nanometer thickness as in a quantum well sandwiched between organic layers as energetic and dielectric barriers. In previous years, versatile optical characterization of 2DHPs has been carried out mainly for thin flakes of single crystals and ultrathin (of the order of 20 nm) polycrystalline films, whereas there is a lack of optical characterization of thick (hundreds of nanometers) polycrystalline films, fundament…
Raman study and theoretical calculations of strain in GaN quantum dot multilayers
2006
Changes in strain and phonon mode energy in stacks of self-assembled GaN quantum dots embedded in AlN have been studied by means of Raman spectroscopy as a function of the number of periods. The ${E}_{2H}$ phonon modes related to the quantum dots and AlN spacers are clearly resolved, and their energies allow monitoring the state of strain of the dots and AlN spacers simultaneously. The evolution of the measured phonon frequencies and the associated strains are discussed in comparison with theoretical calculations of the inhomogeneous strain distribution in a system of coherent misfitting inclusions.
Study of acoustic properties and impact behavior of porous materials homogeneous type metal foams and inhomogeneous
2015
This work is concerned with the theoretical and experimental study of the acoustical properties of macroscopically homogenous and inhomogeneous porous media as well as their mechanical response to impacts. The model of Johnson - Champoux - Allard appeared adapted for the acoustical modeling. This model, associated with a recently developed approach involving the concept of parallel transfer matrices has lead to a new approach of macroscopically inhomogeneous porous materials based on “mixtures of materials”. Furthermore, a parametric study of the absorption coefficient as a function of porosity and frequency has been proposed. The maximums of absorption as well as the envelop of the absorpt…
A general nonexistence result for inhomogeneous semilinear wave equations with double damping and potential terms
2021
Abstract We investigate the large-time behavior of solutions for a class of inhomogeneous semilinear wave equations involving double damping and potential terms. Namely, we first establish a general criterium for the absence of global weak solutions. Next, some special cases of potential and inhomogeneous terms are studied. In particular, when the inhomogeneous term depends only on the variable space, the Fujita critical exponent and the second critical exponent in the sense of Lee and Ni are derived.
On new ways of group methods for reduction of evolution-type equations
2005
AbstractNew exact solutions of the evolution-type equations are constructed by means of a non-point (contact) symmetries. Also we analyzed the discrete symmetries of Maxwell equations in vacuum and decoupled ones to the four independent equations that can be solved independently.
Zur Frage der Charakterisierung stationärer Bewegungen in der Hydrodynamik
1958
Helmholtz andKorteweg propose that the steady motion of a viscous fluid under constant extraneous forces having a single-valued potential dissipates—for any given region and assuming that inertia terms in the dynamic equations can be neglected—less energy than any other motion with the same values of velocity at the boundary.—A generalization of this proposition is here given, and an application discussed. The application deals with the motion of a simple macromolecule model in an inhomogeneous field of flow—a motion caused only by the influence ofStokes' friction.
Coherent effects in the multimode dynamics of inhomogeneously broadened ring lasers
2004
We investigate under which conditions coherent effects manifest in the multimode dynamics of inhomogeneously broadened ring lasers. In particular, we demonstrate that for long enough cavities standard rate equations for class-B lasers fail in describing the multimode dynamics.
Spherically symmetric inhomogeneous cosmological models
2014
Elasticity of Poissonian fiber networks
2000
An effective-medium model is introduced for the elasticity of two-dimensional random fiber networks. These networks are commonly used as basic models of heterogeneous fibrous structures such as paper. Using the exact Poissonian statistics to describe the microscopic geometry of the network, the tensile modulus can be expressed by a single-parameter function. This parameter depends on the network density and fiber dimensions, which relate the macroscopic modulus to the relative importance of axial and bending deformations of the fibers. The model agrees well with simulation results and experimental findings. We also discuss the possible generalizations of the model. Peer reviewed