Search results for "Inositol"

showing 10 items of 236 documents

Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone

2021

The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface–expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10(ΔCD11c)) exhibited a …

MaleLangerinLymphoid TissueNotch signaling pathwayAntigen-Presenting CellsCD11cSpleenADAM10 ProteinMicePhosphatidylinositol 3-KinasesmedicineAnimalsHomeostasisMyeloid CellsProtein kinase BPI3K/AKT/mTOR pathwayCell ProliferationMultidisciplinarybiologyMacrophagesMembrane ProteinsCell DifferentiationDendritic CellsBiological SciencesCD11c AntigenCell biologyMice Inbred C57BLmedicine.anatomical_structurebiology.proteinFemaleAmyloid Precursor Protein SecretasesSignal transductionProtein Processing Post-TranslationalSpleenConventional Dendritic CellSignal TransductionProceedings of the National Academy of Sciences
researchProduct

Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mtor pathways in controlling growth and sensitivity to therapy-implications for cancer and aging

2011

Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described …

MaleMAPK/ERK pathwayAgingMAP Kinase Signaling SystemCancer aging RAF MEK mTORApoptosisReviewBiologyPI3KModels BiologicalApoptosis; Cancer; Kinases; MEK; MTOR; PI3K; Protein phosphorylation; RAF; Signal transductionMicePhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineCancer stem cellNeoplasmscancerAnimalsHumansPTENProtein kinase BCellular SenescencePI3K/AKT/mTOR pathwayCell Proliferation030304 developmental biology0303 health sciencesKinaseTOR Serine-Threonine KinasesapoptosisPTEN PhosphohydrolaseRafCell BiologyMEKprotein phosphorylation3. Good healthCell biologyCrosstalk (biology)kinases030220 oncology & carcinogenesisMutationmTORCancer researchbiology.proteinFemaleraf KinasesProto-Oncogene Proteins c-aktCell agingsignal transduction
researchProduct

Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice.

2010

BACKGROUND & AIMS: The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal can- cer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. METHODS: CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immuno- blot, and flow cytometry analyses. The potential …

MaleOrganoplatinum CompoundsCellular differentiationDrug ResistanceApoptosisBone Morphogenetic Protein 4Colon Cancer; Drug Resistance; Neoplasia; Tumor Resistance to Chemotherapy; AC133 Antigen; Adenomatous Polyposis Coli; Aged; Aged 80 and over; Animals; Antigens CD; Antineoplastic Agents; Apoptosis; Bone Morphogenetic Protein 4; Cell Differentiation; Cells Cultured; Colorectal Neoplasms; Female; Fluorouracil; Glycoproteins; Humans; Male; Mice; Microsatellite Instability; Middle Aged; Mutation; Neoplastic Stem Cells; Organoplatinum Compounds; PTEN Phosphohydrolase; Peptides; Phosphatidylinositol 3-Kinase; Proto-Oncogene Proteins c-akt; Smad4 Protein; GastroenterologyMice80 and overBone morphogenetic protein receptorAC133 AntigenCells CulturedSmad4 ProteinAged 80 and overCulturedColon Cancerintegumentary systemGastroenterologyCell DifferentiationBMP4 colon stem cellsMiddle AgedCDOxaliplatinTumor Resistance to ChemotherapyBone morphogenetic protein 4Adenomatous Polyposis Coliembryonic structuresNeoplastic Stem CellsFemaleMicrosatellite InstabilityFluorouracilStem cellColorectal Neoplasmsanimal structuresCellsAntineoplastic AgentsBiologyBone morphogenetic proteinSettore MED/04 - PATOLOGIA GENERALECancer stem cellAntigens CDPTENAnimalsHumansAntigensneoplasmsPI3K/AKT/mTOR pathwayAgedGlycoproteinsNeoplasiaHepatologyPTEN Phosphohydrolasedigestive system diseasesMutationCancer researchbiology.proteinPhosphatidylinositol 3-KinasePeptidesProto-Oncogene Proteins c-aktGastroenterology
researchProduct

Mechanisms underlying hyperpolarization evoked by P2Y receptor activation in mouse distal colon

2006

In murine colonic circular muscle, ATP mediates fast component of the nerve-evoked inhibitory junction potentials, via activation of P2Y receptors and opening of apamin-sensitive Ca2+-dependent K+ channels. We investigated, using microelectrode recordings, the intracellular events following P2Y-receptor activation by electrical field stimulation or by adenosine 5'-O-2-thiodiphosphate (ADPbetaS), ATP stable analogue. The fast-inhibitory junction potential amplitude was reduced by thapsigargin or ciclopiazonic acid (CPA), sarcoplasmic reticulum Ca2+-ATPase inhibitors, by ryanodine, which inhibits Ca2+ release from ryanodine-sensitive stores, and by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (S…

MaleP2Y receptormedicine.medical_specialtyThapsigarginColonMouse colonBiologyApaminSettore BIO/09 - FisiologiaEnteric inhibitory neurotransmissionAdenylyl cyclaseMicePotassium Channels Calcium-Activatedchemistry.chemical_compoundIntracellular microelectrode recordingReceptors Adrenergic alpha-1Internal medicinemedicineAnimalsCalcium-dependent potassium channelNeuronsPharmacologyModels StatisticalForskolinDose-Response Relationship DrugReceptors Purinergic P2Ryanodine receptorColforsinCalcium storeP2Y receptorHyperpolarization (biology)Inositol trisphosphate receptorElectrophysiologyMice Inbred C57BLEndocrinologychemistryBiophysicsCalciumAdenylyl CyclasesEuropean Journal of Pharmacology
researchProduct

Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly

2012

SUMMARY Coping with seasonal changes in temperature is an important factor underlying the ability of insects to survive over the harsh winter conditions in the northern temperate zone, and only a few drosophilids have been able to colonize sub-polar habitats. Information on their winter physiology is needed as it may shed light on the adaptive mechanisms of overwintering when compared with abundant data on the thermal physiology of more southern species, such as Drosophila melanogaster. Here we report the first seasonal metabolite analysis in a Drosophila species. We traced changes in the cold tolerance and metabolomic profiles in adult Drosophila montana flies that were exposed to thermope…

MalePhysiologyClimatekylmäkoomasta toipuminenvuodenaikaisuuschemistry.chemical_compoundkylmänkestävyyskylmään sopeutuminenFinlandOverwinteringphotoperiodismPrincipal Component Analysisbiologyseasonalitycryoprotectantcold acclimationTemperatureAdaptation PhysiologicalCold TemperatureHabitatMetabolomeDrosophilaFemaleSeasonsDrosophila melanogasterProlinePhotoperiodchill coma recoveryreproductive diapauseAquatic ScienceStress PhysiologicalBotanyTemperate climatemedicineCold acclimationAnimalsMetabolomicsHistidineLactic AcidMolecular BiologyEcology Evolution Behavior and Systematicsfungicold toleranceSeasonalitybiology.organism_classificationmedicine.diseaseTrehalosekryoprotektantitchemistrylisääntymisdiapaussiInsect Scienceta1181Animal Science and ZoologyInositol
researchProduct

2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy

2012

Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells bef…

MaleProgrammed cell deathTime FactorsCell SurvivalMAP Kinase Signaling SystemCellular differentiationMice NudeAntineoplastic AgentsOleic AcidsBiologyglioma biomarkerfatty acidsMembrane LipidsMicePhosphatidylinositol 3-Kinases2-Hydroxyoleic AcidGliomaCell Line TumormedicineAutophagyTemozolomideAnimalsHumansPI3K/AKT/mTOR pathwayCell ProliferationMultidisciplinaryTemozolomideMicroscopy ConfocalDose-Response Relationship DrugCell growthCell MembraneRetinoblastoma proteinCell DifferentiationGliomaBiological Sciencesmedicine.diseaseXenograft Model Antitumor AssaysCell biologyDacarbazineProtein TransportCancer researchbiology.proteinras Proteinssphingomyelin synthaseProto-Oncogene Proteins c-aktcancer drug targetmedicine.drug
researchProduct

Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of c…

2008

The RAS-MAPK, PI (3)K signaling pathways form a network that play a central role in tumorigenesis. The BRAF, KRAS and PI3KCA genes code 3 partners of this network and have been found to be activated by mutation in colorectal cancer; these mutations lead to unrestricted cell growth. We evaluated the clinicopathological features and the prognosis of patients with activated-network colon cancers in a population-based study. A total of 586 colon adenocarcinomas were evaluated using sequencing for mutations of KRAS and PI3KCA, and allelic discrimination for mutation of BRAF. Clinicopathological characteristics were correlated to the risk of bearing a mutation of the network using logistic regres…

MaleProto-Oncogene Proteins B-rafCancer Researchmedicine.medical_specialtyClass I Phosphatidylinositol 3-KinasesColorectal cancerPopulationAdenocarcinomaBiologymedicine.disease_causeProto-Oncogene Proteins p21(ras)Phosphatidylinositol 3-KinasesProto-Oncogene ProteinsInternal medicineBiomarkers TumormedicineHumanseducationSurvival rateAgedMutationeducation.field_of_studyMicrosatellite instabilityCancermedicine.diseaseSurvival RateEndocrinologyOncologyColonic NeoplasmsMutationras ProteinsCancer researchFemaleMicrosatellite InstabilityFranceKRASMitogen-Activated Protein KinasesCarcinogenesisSignal TransductionInternational Journal of Cancer
researchProduct

Activation of P2Y receptors by ATP and by its analogue, ADPbetaS, triggers two calcium signal pathways in the longitudinal muscle of mouse distal col…

2008

Our previous research showed that ATP and adenosine 5'-O-2-thiodiphosphate (ADPbetaS) induce contractile effects in the longitudinal muscle of mouse distal colon via activation of P2Y receptors which are not P2Y(1) or P2Y(12) subtypes. This study investigated the nature of the P2Y receptor subtype(s) and the mechanisms leading to the intracellular calcium concentration increase necessary to trigger muscular contraction. Motor responses of mouse colonic longitudinal muscle to P2Y receptor agonists were examined in vitro as changes in isometric tension. ATP or ADPbetaS induced muscular contraction, which was not affected by P2Y(11) or P2Y(13) selective antagonists. Calcium-free solution or th…

MalePurinergic P2 Receptor Agonistsmedicine.medical_specialtyP2Y receptormedicine.drug_classColonchemistry.chemical_elementCalcium channel blockerCalcium-Transporting ATPasesCalciumBiologyCholinergic AgonistsIn Vitro TechniquesCalcium in biologyMiceAdenosine TriphosphateInternal medicinemedicineAnimalsInositol 145-Trisphosphate ReceptorsCalcium SignalingEnzyme InhibitorsReceptorPharmacologyRyanodine receptorReceptors Purinergic P2Muscle SmoothRyanodine Receptor Calcium Release ChannelThionucleotidesCalcium Channel BlockersAdenosineAdenosine DiphosphateMice Inbred C57BLEndocrinologychemistryType C Phospholipasesmedicine.symptomMuscle contractionmedicine.drugMuscle ContractionEuropean journal of pharmacology
researchProduct

Induction of RAGE Shedding by Activation of G Protein-Coupled Receptors

2011

The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled recep…

MaleReceptors Vasopressinendocrine system diseasesReceptor for Advanced Glycation End Productslcsh:MedicineHydroxamic Acids570 Life sciencesRAGE (receptor)Adenylyl cyclaseADAM10 ProteinMicePhosphatidylinositol 3-Kinaseschemistry.chemical_compoundMolecular Cell BiologyNeurobiology of Disease and RegenerationSignaling in Cellular ProcessesMembrane Receptor SignalingReceptors Immunologiclcsh:ScienceReceptorLungCellular Stress ResponsesCalcium signalingMultidisciplinaryKinaseDipeptidesHormone Receptor SignalingCell biologyMatrix Metalloproteinase 9NeurologyReceptors OxytocinGene Knockdown Techniquescardiovascular systemMatrix Metalloproteinase 2Pituitary Adenylate Cyclase-Activating PolypeptideMedicineRNA InterferenceAdenylyl CyclasesResearch ArticleSignal Transduction570 Biowissenschaftenmedicine.medical_specialtyMAP Kinase Signaling SystemADAM17 ProteinBiologyAlzheimer DiseaseCa2+/calmodulin-dependent protein kinaseInternal medicinemedicineAnimalsHumansProtease InhibitorsCalcium Signalingcardiovascular diseasesBiologyG protein-coupled receptorlcsh:RHEK 293 cellsMembrane Proteinsnutritional and metabolic diseasesCyclic AMP-Dependent Protein KinasesADAM ProteinsG-Protein SignalingHEK293 CellsEndocrinologychemistryProteolysisDementialcsh:QAmyloid Precursor Protein SecretasesMolecular Neurosciencehuman activitiesReceptors Pituitary Adenylate Cyclase-Activating Polypeptide Type INeurosciencePLoS ONE
researchProduct

Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin

2009

The dual role of the inducible NO synthase (iNOS) and NO signaling in head and neck squamous cell carcinoma (HNSCC) is a complex and can both promote or inhibit tumor progression. However, the underlying molecular mechanisms are not yet resolved in detail. We show for the first time that conditions, favoring low NO levels conferred resistance against cisplatin/taxol-induced apoptosis in HNSCC cell lines. Cytoprotection was mediated by survivin, because we observed its upregulation subsequent to low doses of the NO donors S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) or ectopic expression of physiologic amounts of iNOS. Also, RNAi-mediated depletion of survivin block…

MaleUmbilical VeinsCancer ResearchSurvivinFluorescent Antibody TechniqueNitric Oxide Synthase Type IIApoptosisp38 Mitogen-Activated Protein KinasesInhibitor of Apoptosis ProteinsImmunoenzyme TechniquesPhosphatidylinositol 3-Kinaseschemistry.chemical_compoundLY294002Enzyme InhibitorsRNA Small InterferingAged 80 and overReverse Transcriptase Polymerase Chain ReactionCell CycleMiddle AgedCell cycleOncologyHead and Neck NeoplasmsCarcinoma Squamous CellFemaleMicrotubule-Associated ProteinsNitroprussidePaclitaxelImmunoblottingAntineoplastic AgentsS-Nitroso-N-AcetylpenicillamineBiologyCell LineDownregulation and upregulationSurvivinmedicineHumansNitric Oxide DonorsRNA MessengerneoplasmsProtein kinase BNitritesPI3K/AKT/mTOR pathwayAgedmedicine.diseaseAntineoplastic Agents PhytogenicHead and neck squamous-cell carcinomachemistryDrug Resistance NeoplasmTumor progressionImmunologyCancer researchEndothelium VascularCisplatinProto-Oncogene Proteins c-aktInternational Journal of Cancer
researchProduct