Search results for "Instrumentation and Methods for Astrophysics"
showing 10 items of 706 documents
The Local Fractional Derivative of Fractal Curves
2008
Fractal curves described by iterated function system (IFS) are generally non-integer derivative. For that we use fractional derivative to investigate differentiability of this curves. We propose a method to calculate local fractional derivative of a curve from IFS property. Also we give some examples of IFS representing the slopes of the right and left half-tangent of the fractal curves.
The scientific payload on-board the HERMES-TP and HERMES-SP CubeSat missions
2021
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In t…
Aalto-1, multi-payload CubeSat: Design, integration and launch
2021
The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational since June 2017. It carries three experimental payloads: Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON), and Electrostatic Plasma Brake (EPB). AaSI is a hyperspectral imager in visible and near-infrared (NIR) wavelength bands, RADMON is an energetic particle detector and EPB is a de-orbiting technology demonstration payload. The platform was designed to accommodate multiple payloads while ensuring sufficient data, power, radio, mechanica…
Multi-beam capabilities for high precision astrometry at low frequencies using VLBI
2011
We are carrying out a simulation study to characterise the advantages of VLBI with multiple beams, which will be a feature of the next generation of instruments. We will focus on VLBI astrometric measurements at lower frequencies (1.4 GHz and below). For our simulations, we have selected a network consisting of ASKAP, the Australian SKA precursor, plus existing Australian antennas from the LBA (Long Baseline Array) and the new antenna in New Zealand (figure 1a). We have used different models to represent the ionospheric turbulences and frequencies. The preliminary results show an improvement of an order of magnitude in the astrometric precision achieved using multiple calibrators with angul…
The Athena X-ray Integral Field Unit (X-IFU)
2016
Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.
A Novel Angle Estimation for mmWave FMCW Radars Using Machine Learning
2021
In this article, we present a novel machine learning based angle estimation and field of view (FoV) enhancement techniques for mmWave FMCW radars operating in the frequency range of 77 - 81 GHz. Field of view is enhanced in both azimuth and elevation. The Elevation FoV enhancement is achieved by keeping the orientation of antenna elements in elevation. In this orientation, radar focuses the beam in vertical direction there by enhancing the elevation FoV. An Azimuth FoV enhancement is achieved by mechanically rotating the radar horizontally, which has antenna elements in the elevation. With the proposed angle estimation technique for such rotating radars, root mean square error (RMSE) of 2.5…
On the correction of conserved variables for numerical RMHD with staggered constrained transport
2015
Despite the success of the combination of conservative schemes and staggered constrained transport algorithms in the last fifteen years, the accurate description of highly magnetized, relativistic flows with strong shocks represents still a challenge in numerical RMHD. The present paper focusses in the accuracy and robustness of several correction algorithms for the conserved variables, which has become a crucial ingredient in the numerical simulation of problems where the magnetic pressure dominates over the thermal pressure by more than two orders of magnitude. Two versions of non-relativistic and fully relativistic corrections have been tested and compared using a magnetized cylindrical …
An optical pulse modulator based on an all-fibre mirror
1996
In this article we present an all-fiber Sagnac interferometer modulated in a pulsed regime.
Reliable Planar Object Pose Estimation in Light Fields From Best Subaperture Camera Pairs
2018
International audience; A light-field camera can obtain richer information about a scene than a usual camera. This property offers a lot of potential for robot vision. In this paper, we present a method for pose estimation of a planar object with a light-field camera. The light-field camera can be regarded as a set of sub-aperture cameras. Although any combination of them can theoretically be used for the pose estimation, the accuracy depends on the combination. We show that the estimated pose error can be reduced by selecting the best pair of sub-aperture cameras. We have evaluated the accuracy of our approach with real experiments using a light-field camera in front of planar targets held…
What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and…
2015
We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the P…