Search results for "Integer programming"
showing 10 items of 69 documents
Nurse Scheduling Problem: An Integer Programming Model with a Practical Application
2012
We use a binary integer programming model to formulate and solve a nurse scheduling problem (NSP) which maximally satisfies nurse preferences. In a practical application of a VA hospital, besides considering the scheduling of two types of nurses (registered nurses and licensed practical nurses), two other types of employees (nursing assistants and health care techs), one nurse manager, and a clinical nurse leader are also included in our model. Most of these employees are working full-time. In addition, we distinguish the schedule of weekdays and weekends with different requirements and different preferences for employees. Besides the requirements for each shift, we consider requirements fo…
Formulations for an inventory routing problem
2014
In this paper, we present and compare formulations for the inventory routing problem (IRP) where the demand of customers has to be served, over a discrete time horizon, by capacitated vehicles starting and ending their routes at a depot. The objective of the IRP is the minimization of the sum of inventory and transportation costs. The formulations include known and new mathematical programming formulations. Valid inequalities are also presented. The formulations are tested on a large set of benchmark instances. One of the most significant conclusions is that the formulations that use vehicle-indexed variables are superior to the more compact, aggregate formulations.
A branch-and-cut algorithm for the Orienteering Arc Routing Problem
2016
[EN] In arc routing problems, customers are located on arcs, and routes of minimum cost have to be identified. In the Orienteering Arc Routing Problem (OARP),in addition to a set of regular customers that have to be serviced, a set of potential customers is available. From this latter set, customers have to be chosen on the basis of an associated profit. The objective is to find a route servicing the customers which maximize the total profit collected while satisfying a given time limit on the route.In this paper, we describe large families of facet-inducing inequalities for the OARP and present a branch-and-cut algorithm for its solution. The exact algorithm embeds a procedure which builds…
The Multiple Multidimensional Knapsack with Family-Split Penalties
2021
Abstract The Multiple Multidimensional Knapsack Problem with Family-Split Penalties (MMdKFSP) is introduced as a new variant of both the more classical Multi-Knapsack and Multidimensional Knapsack Problems. It reckons with items categorized into families and where if an individual item is selected to maximize the profit, all the items of the same family must be selected as well. Items belonging to the same family can be assigned to different knapsacks; however, in this case, split penalties are incurred. This problem arises in resource management of distributed computing contexts and Service Oriented Architecture environments. An exact algorithm based on the exploitation of a specific combi…
GRASP with path relinking heuristics for the antibandwidth problem
2010
This article proposes a linear integer programming formulation and several heuristics based on GRASP and path relinking for the antibandwidth problem. In the antibandwidth problem, one is given an undirected graph with n nodes and must label the nodes in a way that each node receives a unique label from the set {1, 2,…,n}, such that, among all adjacent node pairs, the minimum difference between the node labels is maximized. Computational results show that only small instances of this problem can be solved exactly (to optimality) with a commercial integer programming solver and that the heuristics find high-quality solutions in much less time than the commercial solver. © 2010 Wiley Periodic…
TCSC allocation based on line flow based equations via mixed-integer programming
2007
Summary form only given. Research effort has been given to locate the optimal locations of thyristor-controlled series capacitor (TCSC) and their initial compensation levels using mixed-integer programming (MIP). As a useful technique for combinatorial optimisation over integer and continuous variables, the MIP approach can provide robust performance as well as high computational efficiency while solving complex optimal problems. Previous work using MIP employed DC load flow model ignoring reactive power balance, power loss and transformer tap ratios. In this paper, a new planning method is developed based on recently reported line flow equations and basic linearisation of binary-continuous…
A hierarchic approach to production planning and scheduling of a flexible manufacturing system
1999
Abstract The paper deals with the problem of improving the machine utilization of a flexible manufacturing cell. Limited tool magazine space of the machines turns out to be a relevant bottleneck. A hierarchic approach for this problem is proposed. At the upper level, sets of parts that can be concurrently processed (batches) are determined. At the lower levels, batches are sequenced, linked, and scheduled. Methods taken from the literature are used for the solution of the latter subproblems, and an original mixed integer programming model is formulated to determine batches. The proposed methods are discussed on the basis of computational experience carried out on real instances.
A branch and bound algorithm for the maximum diversity problem
2010
This article begins with a review of previously proposed integer formulations for the maximum diversity problem (MDP). This problem consists of selecting a subset of elements from a larger set in such a way that the sum of the distances between the chosen elements is maximized. We propose a branch and bound algorithm and develop several upper bounds on the objective function values of partial solutions to the MDP. Empirical results with a collection of previously reported instances indicate that the proposed algorithm is able to solve all the medium-sized instances (with 50 elements) as well as some large-sized instances (with 100 elements). We compare our method with the best previous line…
A note on the separation of subtour elimination constraints in elementary shortest path problems
2013
Abstract This note proposes an alternative procedure for identifying violated subtour elimination constraints (SECs) in branch-and-cut algorithms for elementary shortest path problems. The procedure is also applicable to other routing problems, such as variants of travelling salesman or shortest Hamiltonian path problems, on directed graphs. The proposed procedure is based on computing the strong components of the support graph. The procedure possesses a better worst-case time complexity than the standard way of separating SECs, which uses maximum flow algorithms, and is easier to implement.
Two-phase branch-and-cut for the mixed capacitated general routing problem
2015
The Mixed Capacitated General Routing Problem (MCGRP) is defined over a mixed graph, for which some vertices must be visited and some links must be traversed at least once. The problem consists of determining a set of least-cost vehicle routes that satisfy this requirement and respect the vehicle capacity. Few papers have been devoted to the MCGRP, in spite of interesting real-world applications, prevalent in school bus routing, mail delivery, and waste collection. This paper presents a new mathematical model for the MCGRP based on two-index variables. The approach proposed for the solution is a two-phase branch-and-cut algorithm, which uses an aggregate formulation to develop an effective …