Search results for "Integer"
showing 10 items of 250 documents
On the statistics of pairs of logarithms of integers
2022
We study the statistics of pairs of logarithms of positive integers at various scalings, either with trivial weights or with weights given by the Euler function, proving the existence of pair correlation functions. We prove that at the linear scaling, which is not the usual scaling by the inverse of the average gap, the pair correlations exhibit a level repulsion similar to radial distribution functions of fluids. We prove total loss of mass phenomena at superlinear scalings, and constant nonzero asymptotic behavior at sublinear scalings. The case of Euler weights has applications to the pair correlation of the lengths of common perpendicular geodesic arcs from the maximal Margulis cusp nei…
Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability
2020
Despite significant effort, building models that are both interpretable and accurate is an unresolved challenge for many pattern recognition problems. In general, rule-based and linear models lack accuracy, while deep learning interpretability is based on rough approximations of the underlying inference. Using a linear combination of conjunctive clauses in propositional logic, Tsetlin Machines (TMs) have shown competitive performance on diverse benchmarks. However, to do so, many clauses are needed, which impacts interpretability. Here, we address the accuracy-interpretability challenge in machine learning by equipping the TM clauses with integer weights. The resulting Integer Weighted TM (…
Adaptive learning of compressible strings
2020
Suppose an oracle knows a string $S$ that is unknown to us and that we want to determine. The oracle can answer queries of the form "Is $s$ a substring of $S$?". In 1995, Skiena and Sundaram showed that, in the worst case, any algorithm needs to ask the oracle $\sigma n/4 -O(n)$ queries in order to be able to reconstruct the hidden string, where $\sigma$ is the size of the alphabet of $S$ and $n$ its length, and gave an algorithm that spends $(\sigma-1)n+O(\sigma \sqrt{n})$ queries to reconstruct $S$. The main contribution of our paper is to improve the above upper-bound in the context where the string is compressible. We first present a universal algorithm that, given a (computable) compre…
Functions definable by numerical set-expressions
2011
A "numerical set-expression" is a term specifying a cascade of arithmetic and logical operations to be performed on sets of non-negative integers. If these operations are confined to the usual Boolean operations together with the result of lifting addition to the level of sets, we speak of "additive circuits". If they are confined to the usual Boolean operations together with the result of lifting addition and multiplication to the level of sets, we speak of "arithmetic circuits". In this paper, we investigate the definability of sets and functions by means of additive and arithmetic circuits, occasionally augmented with additional operations.
Finite Satisfiability of the Two-Variable Guarded Fragment with Transitive Guards and Related Variants
2018
We consider extensions of the two-variable guarded fragment, GF2, where distinguished binary predicates that occur only in guards are required to be interpreted in a special way (as transitive relations, equivalence relations, pre-orders or partial orders). We prove that the only fragment that retains the finite (exponential) model property is GF2 with equivalence guards without equality. For remaining fragments we show that the size of a minimal finite model is at most doubly exponential. To obtain the result we invent a strategy of building finite models that are formed from a number of multidimensional grids placed over a cylindrical surface. The construction yields a 2NExpTime-upper bou…
Subdivision into i-packings and S-packing chromatic number of some lattices
2015
An ?$i$?-packing in a graph ?$G$? is a set of vertices at pairwise distance greater than ?$i$?. For a nondecreasing sequence of integers ?$S=(s_1,s_2,\ldots)$?, the?$S$?-packing chromatic number of a graph ?$G$? is the least integer ?$k$? such that there exists a coloring of ?$G$? into ?$k$? colors where each set of vertices colored ?$i$?, ?$i=1,\ldots,k$?, is an ?$s_i$?-packing. This paper describes various subdivisions of an ?$i$?-packing into ?$j$?-packings ?$(j>i)$? for the hexagonal, square and triangular lattices. These results allow us to bound the ?$S$?-packing chromatic number for these graphs, with more precise bounds and exact values for sequences ?$S=(s_i,i \in \mathbb{N}^*)$?, …
Catalan words avoiding pairs of length three patterns
2021
Catalan words are particular growth-restricted words counted by the eponymous integer sequence. In this article we consider Catalan words avoiding a pair of patterns of length 3, pursuing the recent initiating work of the first and last authors and of S. Kirgizov where (among other things) the enumeration of Catalan words avoiding a patterns of length 3 is completed. More precisely, we explore systematically the structural properties of the sets of words under consideration and give enumerating results by means of recursive decomposition, constructive bijections or bivariate generating functions with respect to the length and descent number. Some of the obtained enumerating sequences are kn…
An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in Italian Regions
2020
Abstract The availability of intensive care beds during the COVID‐19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short‐term prediction of COVID‐19 intensive care unit (ICU) beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model, which pools information over different areas, and an area‐specific nonstationary integer autoregressive methodology. Optimal weights are estimated using a leave‐last‐out rationale. The approach has been set up and validated during t…
Languages with mismatches and an application to approximate indexing
2005
In this paper we describe a factorial language, denoted by L(S, k,r), that contains all words that occur in a string 5 up to k mismatches every r symbols. Then we give some combinatorial properties of a parameter, called repetition index and denoted by R(S,k,r), defined as the smallest integer h ? 1 such that all strings of this length occur at most in a unique position of the text S up to k mismatches every r symbols. We prove that R(S, k, r) is a non-increasing function of r and a non-decreasing function of k and that the equation r = R(S, k, r) admits a unique solution. The repetition index plays an important role in the construction of an indexing data structure based on a trie that rep…
Quotients of Hypersurfaces in Weighted Projective Space
2009
Abstract In [Bini, van Geemen, Kelly, Mirror quintics, discrete symmetries and Shioda maps, 2009] some quotients of one-parameter families of Calabi–Yau varieties are related to the family of Mirror Quintics by using a construction due to Shioda. In this paper, we generalize this construction to a wider class of varieties. More specifically, let A be an invertible matrix with non-negative integer entries. We introduce varieties XA and in weighted projective space and in , respectively. The variety turns out to be a quotient of a Fermat variety by a finite group. As a by-product, XA is a quotient of a Fermat variety and is a quotient of XA by a finite group. We apply this construction to som…