Search results for "Integer"
showing 10 items of 250 documents
Graphes connexes représentation des entiers et équirépartition
1983
Abstract Let q be an integer ≥2 and Ω a suitable subset of {0,…,q − 1}2; C (q; Ω) denotes the set of natural integers, the pairs of successive q-adic digits of which are in Ω. If P is an irrational polynomial, the sequence (P(n): n ∈ C (q; Ω)) is uniformly distributed modulo one.
Sturmian graphs and integer representations over numeration systems
2012
AbstractIn this paper we consider a numeration system, originally due to Ostrowski, based on the continued fraction expansion of a real number α. We prove that this system has deep connections with the Sturmian graph associated with α. We provide several properties of the representations of the natural integers in this system. In particular, we prove that the set of lazy representations of the natural integers in this numeration system is regular if and only if the continued fraction expansion of α is eventually periodic. The main result of the paper is that for any number i the unique path weighted i in the Sturmian graph associated with α represents the lazy representation of i in the Ost…
Dichotomies properties on computational complexity of S-packing coloring problems
2015
This work establishes the complexity class of several instances of the S -packing coloring problem: for a graph G , a positive integer k and a nondecreasing list of integers S = ( s 1 , ? , s k ) , G is S -colorable if its vertices can be partitioned into sets S i , i = 1 , ? , k , where each S i is an s i -packing (a set of vertices at pairwise distance greater than s i ). In particular we prove a dichotomy between NP-complete problems and polynomial-time solvable problems for lists of at most four integers.
On Packing Colorings of Distance Graphs
2014
International audience; The {\em packing chromatic number} $\chi_{\rho}(G)$ of a graph $G$ is the least integer $k$ for which there exists a mapping $f$ from $V(G)$ to $\{1,2,\ldots ,k\}$ such that any two vertices of color $i$ are at distance at least $i+1$. This paper studies the packing chromatic number of infinite distance graphs $G(\mathbb{Z},D)$, i.e. graphs with the set $\mathbb{Z}$ of integers as vertex set, with two distinct vertices $i,j\in \mathbb{Z}$ being adjacent if and only if $|i-j|\in D$. We present lower and upper bounds for $\chi_{\rho}(G(\mathbb{Z},D))$, showing that for finite $D$, the packing chromatic number is finite. Our main result concerns distance graphs with $D=…
Polyhedral results for a vehicle routing problem
1991
Abstract The Vehicle Routing Problem is a well known, and hard, combinatorial problem, whose polyhedral structure has deserved little attention. In this paper we consider the particular case in which all the demands are equal (since in the general case the associated polytope may be empty). From a known formulation of the problem we obtain the dimension of the corresponding polytope and we study the facetial properties of every inequality in it.
p-Length andp′-Degree Irreducible Characters Having Values in ℚp
2013
Let G be a p-solvable group of p-length l, where p is any prime. We show that G has at least 2 l irreducible characters of degree coprime to p and having values inside ℚ p . This generalizes a previous result for p = 2 [6] to arbitrary primes. With the same notation, we prove that if p is odd then G has at least 2 l Galois orbits of conjugacy classes of p-elements having values in ℚ p .
Character sums and double cosets
2008
Abstract If G is a p-solvable finite group, P is a self-normalizing Sylow p-subgroup of G with derived subgroup P ′ , and Ψ is the sum of all the irreducible characters of G of degree not divisible by p, then we prove that the integer Ψ ( P ′ z P ′ ) is divisible by | P | for all z ∈ G . This answers a question of J. Alperin.
A note on a result of Guo and Isaacs about p-supersolubility of finite groups
2016
In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.
Branch and bound for the cutwidth minimization problem
2013
The cutwidth minimization problem consists of finding a linear arrangement of the vertices of a graph where the maximum number of cuts between the edges of the graph and a line separating consecutive vertices is minimized. We first review previous approaches for special classes of graphs, followed by lower bounds and then a linear integer formulation for the general problem. We then propose a branch-and-bound algorithm based on different lower bounds on the cutwidth of partial solutions. Additionally, we introduce a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic to obtain good initial solutions. The combination of the branch-and-bound and GRASP methods results in optimal solu…
Characterizing extreme points of polyhedra an extension of a result by Wolfgang Bühler
1982
This paper reconsiders the characterization given by Buhler admitting convex polyhedra of probability distributions on a finite or countable set which are given by systems of linear inequalities more complex than those considered before.