Search results for "Integer"

showing 10 items of 250 documents

Graphes connexes représentation des entiers et équirépartition

1983

Abstract Let q be an integer ≥2 and Ω a suitable subset of {0,…,q − 1}2; C (q; Ω) denotes the set of natural integers, the pairs of successive q-adic digits of which are in Ω. If P is an irrational polynomial, the sequence (P(n): n ∈ C (q; Ω)) is uniformly distributed modulo one.

Discrete mathematicsCombinatoricsPolynomialSequenceAlgebra and Number TheoryIntegerModuloMathematics::Number TheoryMathematicsJournal of Number Theory
researchProduct

Sturmian graphs and integer representations over numeration systems

2012

AbstractIn this paper we consider a numeration system, originally due to Ostrowski, based on the continued fraction expansion of a real number α. We prove that this system has deep connections with the Sturmian graph associated with α. We provide several properties of the representations of the natural integers in this system. In particular, we prove that the set of lazy representations of the natural integers in this numeration system is regular if and only if the continued fraction expansion of α is eventually periodic. The main result of the paper is that for any number i the unique path weighted i in the Sturmian graph associated with α represents the lazy representation of i in the Ost…

Discrete mathematicsContinued fractionsApplied MathematicsNumeration systemsSturmian graphsGraphCombinatoricsOstrowski numerationIntegerIf and only ifnumeration systems Sturmian graphs continued fractions.Numeration systems; SUBWORD GRAPHS; WORDSDiscrete Mathematics and CombinatoricsSUBWORD GRAPHSContinued fractionWORDSMathematicsReal number
researchProduct

Dichotomies properties on computational complexity of S-packing coloring problems

2015

This work establishes the complexity class of several instances of the S -packing coloring problem: for a graph G , a positive integer k and a nondecreasing list of integers S = ( s 1 , ? , s k ) , G is S -colorable if its vertices can be partitioned into sets S i , i = 1 , ? , k , where each S i is an s i -packing (a set of vertices at pairwise distance greater than s i ). In particular we prove a dichotomy between NP-complete problems and polynomial-time solvable problems for lists of at most four integers.

Discrete mathematicsDichotomyComputational complexity theory010102 general mathematics0102 computer and information sciences01 natural sciencesGraphTheoretical Computer ScienceCombinatoricsIntegerSet packing010201 computation theory & mathematicsComplexity classDiscrete Mathematics and CombinatoricsPairwise comparison0101 mathematicsColoring problemMathematicsDiscrete Mathematics
researchProduct

On Packing Colorings of Distance Graphs

2014

International audience; The {\em packing chromatic number} $\chi_{\rho}(G)$ of a graph $G$ is the least integer $k$ for which there exists a mapping $f$ from $V(G)$ to $\{1,2,\ldots ,k\}$ such that any two vertices of color $i$ are at distance at least $i+1$. This paper studies the packing chromatic number of infinite distance graphs $G(\mathbb{Z},D)$, i.e. graphs with the set $\mathbb{Z}$ of integers as vertex set, with two distinct vertices $i,j\in \mathbb{Z}$ being adjacent if and only if $|i-j|\in D$. We present lower and upper bounds for $\chi_{\rho}(G(\mathbb{Z},D))$, showing that for finite $D$, the packing chromatic number is finite. Our main result concerns distance graphs with $D=…

Discrete mathematicsFOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Applied Mathematics[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM][INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]distance graphGraphVertex (geometry)Combinatoricspacking chromatic numberIntegergraph coloringFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Combinatoricsdistance graph.Graph coloringChromatic scaleCombinatorics (math.CO)MathematicsComputer Science - Discrete Mathematics
researchProduct

Polyhedral results for a vehicle routing problem

1991

Abstract The Vehicle Routing Problem is a well known, and hard, combinatorial problem, whose polyhedral structure has deserved little attention. In this paper we consider the particular case in which all the demands are equal (since in the general case the associated polytope may be empty). From a known formulation of the problem we obtain the dimension of the corresponding polytope and we study the facetial properties of every inequality in it.

Discrete mathematicsFacet (geometry)Information Systems and ManagementGeneral Computer ScienceDimension (graph theory)Structure (category theory)PolytopeManagement Science and Operations ResearchIndustrial and Manufacturing EngineeringCombinatoricsModeling and SimulationVehicle routing problemRouting (electronic design automation)Integer programmingVertex enumeration problemMathematicsEuropean Journal of Operational Research
researchProduct

p-Length andp′-Degree Irreducible Characters Having Values in ℚp

2013

Let G be a p-solvable group of p-length l, where p is any prime. We show that G has at least 2 l irreducible characters of degree coprime to p and having values inside ℚ p . This generalizes a previous result for p = 2 [6] to arbitrary primes. With the same notation, we prove that if p is odd then G has at least 2 l Galois orbits of conjugacy classes of p-elements having values in ℚ p .

Discrete mathematicsFinite groupAlgebra and Number TheoryConjugacy classDegree (graph theory)Coprime integersGroup (mathematics)Mathematics::Number TheoryPrime (order theory)MathematicsCommunications in Algebra
researchProduct

Character sums and double cosets

2008

Abstract If G is a p-solvable finite group, P is a self-normalizing Sylow p-subgroup of G with derived subgroup P ′ , and Ψ is the sum of all the irreducible characters of G of degree not divisible by p, then we prove that the integer Ψ ( P ′ z P ′ ) is divisible by | P | for all z ∈ G . This answers a question of J. Alperin.

Discrete mathematicsFinite groupAlgebra and Number TheoryDegree (graph theory)Character theorySylow theoremsCommutator subgroupFinite groupsCombinatoricsCharacter (mathematics)IntegerDouble cosetsCosetCharacter theoryMcKay conjectureMathematicsJournal of Algebra
researchProduct

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

2016

In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.

Discrete mathematicsFinite groupCoprime integersP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsSylow theoremsGrups Teoria deOrder (ring theory)01 natural sciencesPrime (order theory)CombinatoricsGlobal informationLocally finite group0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsArchiv der Mathematik
researchProduct

Branch and bound for the cutwidth minimization problem

2013

The cutwidth minimization problem consists of finding a linear arrangement of the vertices of a graph where the maximum number of cuts between the edges of the graph and a line separating consecutive vertices is minimized. We first review previous approaches for special classes of graphs, followed by lower bounds and then a linear integer formulation for the general problem. We then propose a branch-and-bound algorithm based on different lower bounds on the cutwidth of partial solutions. Additionally, we introduce a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic to obtain good initial solutions. The combination of the branch-and-bound and GRASP methods results in optimal solu…

Discrete mathematicsGeneral Computer ScienceBranch and boundGeneral problemMinimization problemGRASPCPU timeManagement Science and Operations ResearchUpper and lower boundsCombinatoricsModeling and SimulationInteger programmingGreedy randomized adaptive search procedureMathematicsComputers & Operations Research
researchProduct

Characterizing extreme points of polyhedra an extension of a result by Wolfgang Bühler

1982

This paper reconsiders the characterization given by Buhler admitting convex polyhedra of probability distributions on a finite or countable set which are given by systems of linear inequalities more complex than those considered before.

Discrete mathematicsGeneral MathematicsRegular polygonInteger points in convex polyhedraManagement Science and Operations ResearchCombinatoricsPolyhedronLinear inequalityConvex polytopeCountable setExtreme pointSoftwareSpherical polyhedronMathematicsZeitschrift für Operations Research
researchProduct