Search results for "Integrable function"
showing 10 items of 25 documents
Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values
2013
Fremlin (Ill J Math 38:471–479, 1994) proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable. In this paper we prove that the result remains valid also in case of multifunctions with compact convex values being subsets of an arbitrary Banach space (see Theorem 3.4). Di Piazza and Musial (Monatsh Math 148:119–126, 2006) proved that if \(X\) is a separable Banach space, then each Henstock integrable multifunction which takes as its values convex compact subsets of \(X\) is a sum of a McShane integrable multifunction and a Henstock integrable function. Here we show that such a decomposition is true also in case of an arbitrary Banac…
Radon-Nikodym derivatives of finitely additive interval measures taking values in a Banach space with basis
2011
Let X be a Banach space with a Schauder basis {en}, and let Φ(I)= ∑n en ∫I fn(t)dt be a finitely additive interval measure on the unit interval [0, 1], where the integrals are taken in the sense of Henstock–Kurzweil. Necessary and sufficient conditions are given for Φ to be the indefinite integral of a Henstock–Kurzweil–Pettis (or Henstock, or variational Henstock) integrable function f:[0, 1] → X.
Some remarks on few recent results on the damped quantum harmonic oscillator
2020
Abstract In a recent paper, Deguchi et al. (2019), the authors proposed an analysis of the damped quantum harmonic oscillator in terms of ladder operators. This approach was shown to be partly incorrect in Bagarello et al. (2019), via a simple no-go theorem. More recently, (Deguchi and Fujiwara, 2019), Deguchi and Fujiwara claimed that our results in Bagarello et al. (2019) are wrong, and compute what they claim is the square integrable vacuum of their annihilation operators. In this brief note, we show that their vacuum is indeed not a vacuum, and we try to explain what is behind their mistakes in Deguchi et al. (2019) and Deguchi and Fujiwara (2019). We also propose a very simple example …
THE SPACE OF STRING CONFIGURATIONS IN STRING FIELD THEORY
1990
In this paper we consider the set of maps from the interval [0, π] which constitute the argument of the functionals of a String Field Theory. We show that in order to correctly reproduce results of the dual model one has to include all square integrable functions in the functional integral, or Ω0 in terms of Sobolev spaces.
On Scattering and Bound States for a Singular Potential
1970
To understand the origin of the difficulties in the determination of the physical wavefunc tion for an attractive inverse square potential, we study a model in which the singularity at the origin is substituted by a repulsive core. The structure of the spectrum of energy levels is discussed in some detail. The physical interpretation of the solutions of the Schrodinger equation for a potential of the form - (-h 2 /2m) 11/ r 2 presents difficulties, which occur for 11 larger than (l + 1/2)\ where l is the angular momentum. The difficulties are due to the fact that the condition of square integrability usually imposed on the wavefunction is not sufficient in this case to determine phase shif…
Pointwise characterizations of Hardy-Sobolev functions
2006
We establish simple pointwise characterizations of functions in the Hardy-Sobolev spaces within the range n/(n+1)<p <=1. In addition, classical Hardy inequalities are extended to the case p <= 1.
A no-go result for the quantum damped harmonic oscillator
2019
Abstract In this letter we show that it is not possible to set up a canonical quantization for the damped harmonic oscillator using the Bateman Lagrangian. In particular, we prove that no square integrable vacuum exists for the natural ladder operators of the system, and that the only vacua can be found as distributions. This implies that the procedure proposed by some authors is only formally correct, and requires a much deeper analysis to be made rigorous.
An implicit non-linear time dependent equation has a solution
1991
has a solution (u, u, w). The operators &s(l) and a(t) are maximal monotone from a real Hilbert space V to its dual such that &(r) + 9?(r) are V-coercive and a(r) are not degenerate. A linear compact injection i embeds V to a real Banach space W and each d(r) is the strongly monotone subdifferential of a continuous convex function #(I, ) on W. The function f is square integrable. The functions W(r): V+ W* are Lipschitzian as V*-valued functions. Section 3 contains the theorems. The main result is Theorem 2. Theorems 3 and 4 demonstrate the smoothing effect on the initial condition. Their proofs are given in Section 4. They exploit the methods of di Benedetto and Showalter, [4], who studied …
On the Minimal Solution of the Problem of Primitives
2000
Abstract We characterize the primitives of the minimal extension of the Lebesgue integral which also integrates the derivatives of differentiable functions (called the C -integral). Then we prove that each BV function is a multiplier for the C -integral and that the product of a derivative and a BV function is a derivative modulo a Lebesgue integrable function having arbitrarily small L 1 -norm.
Hilbert-Schmidt Hankel operators on the Segal-Bargmann space
2004
This paper considers Hankel operators on the Segal-Bargmann space of holomorphic functions onCn\mathbb {C}^nthat are square integrable with respect to the Gaussian measure. It is shown that in the case of a bounded symbolg∈L∞(Cn)g \in L^{\infty }(\mathbb {C}^n)the Hankel operatorHgH_gis of the Hilbert-Schmidt class if and only ifHg¯H_{\bar {g}}is Hilbert-Schmidt. In the case where the symbol is square integrable with respect to the Lebesgue measure it is known that the Hilbert-Schmidt norms of the Hankel operatorsHgH_gandHg¯H_{\bar {g}}coincide. But, in general, if we deal with bounded symbols, only the inequality‖Hg‖HS≤2‖Hg¯‖HS\|H_g\|_{HS}\leq 2\|H_{\bar {g}}\|_{HS}can be proved. The resul…