Search results for "Interactive methods"

showing 10 items of 34 documents

A New Paradigm in Interactive Evolutionary Multiobjective Optimization

2020

Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, whe…

050101 languages & linguisticsMathematical optimizationComputer sciencemedia_common.quotation_subjectdecision makerEvolutionary algorithmpäätöksentukijärjestelmätevoluutiolaskentapreference information02 engineering and technologySpace (commercial competition)Multi-objective optimizationoptimointiachievement scalarizing functionsalgoritmit0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesQuality (business)evolutionary algorithmsFunction (engineering)media_commonbusiness.industry05 social sciencesinteractive methodsModular designDecision makermonitavoiteoptimointiPreference020201 artificial intelligence & image processingbusiness
researchProduct

Optimistic NAUTILUS navigator for multiobjective optimization with costly function evaluations

2022

AbstractWe introduce novel concepts to solve multiobjective optimization problems involving (computationally) expensive function evaluations and propose a new interactive method called O-NAUTILUS. It combines ideas of trade-off free search and navigation (where a decision maker sees changes in objective function values in real time) and extends the NAUTILUS Navigator method to surrogate-assisted optimization. Importantly, it utilizes uncertainty quantification from surrogate models like Kriging or properties like Lipschitz continuity to approximate a so-called optimistic Pareto optimal set. This enables the decision maker to search in unexplored parts of the Pareto optimal set and requires …

Control and Optimizationdecision makersApplied Mathematicspäätöksentekopreference informationManagement Science and Operations Researchinteractive methodsmonitavoiteoptimointiComputer Science ApplicationsoptimointiBusiness Management and Accounting (miscellaneous)multiobjective optimization problemskrigingmallit (mallintaminen)kriging-menetelmäcomputational cost
researchProduct

Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality

2018

As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for gaining in robustness. In this paper, we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to support a decision maker to find a most preferred lightly robust efficient solution with a good balance between robustness and the objective function values in the most typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement scalarizi…

Mathematical optimizationdecision supportOptimization problemmultiobjective robust optimizationComputer sciencepäätöksenteko0211 other engineering and technologies02 engineering and technologyManagement Science and Operations ResearchMulti-objective optimizationoptimointiRobustness (computer science)0502 economics and business050210 logistics & transportation021103 operations research05 social scienceslight robust efficiencyRobust optimizationinteractive methodshandling uncertaintyDecision makerMinimaxmonitavoiteoptimointiepävarmuusVisualizationMultiobjective optimization problemtrade-off between robustness and qualityBusiness Management and Accounting (miscellaneous)OR Spectrum
researchProduct

Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker

2021

AbstractSolving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the problem. There are different interactive methods, and it is important to compare them and find the best-suited one for solving the problem in question. Comparisons with real decision makers are expensive, and artificial decision makers (ADMs) have been proposed to simulate humans in basic testing before involving real decision makers. Existing ADMs only consider one type of preference information. In this paper, we propose ADM-II, which is tailored to assess several …

021103 operations researchPerformance comparison0211 other engineering and technologiesevoluutiolaskentapäätöksentukijärjestelmät02 engineering and technologymonitavoiteoptimointiMany-objective optimizationComputational MathematicsArtificial Intelligenceinteraktiivisuus0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingEngineering (miscellaneous)Interactive methodsInformation SystemsComplex & Intelligent Systems
researchProduct

Interactive Nonlinear Multiobjective Optimization Methods

2016

An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the role of the decision maker is very important in interactive methods, methods presented are classified according to the type of preference information that the decision maker is assumed to provide. peerReviewed

Pareto optimalityMathematical optimization021103 operations researchComputer sciencemultiple criteria decision making0211 other engineering and technologies02 engineering and technologyinteractive methodsDecision makernonlinear optimizationMulti-objective optimizationPreferenceNonlinear programmingPareto optimalNonlinear systemMultiobjective optimization problemmultiple objectives0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing
researchProduct

Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods

2022

Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance among conflicting objectives. Several interactive methods have been developed in the literature. However, choosing the most suitable interactive method for a given problem can prove challenging and appropriate indicators are needed to compare interactive methods. Some indicators exist for a priori methods, where preferences are provided at the beginning of the solution process. We present some numerical experiments that illustrate why these indicators are not suitable for …

metricsoptimointipäätöksentekointeraktiivisuuspäätöksentukijärjestelmätperformance assessmentinteractive methodsmulti-criterion optimization and decision-makingmultiple criteria optimizationmonitavoiteoptimointiperformanceindikaattoritperformance evaluationProceedings of the Genetic and Evolutionary Computation Conference Companion
researchProduct

E-NAUTILUS: A decision support system for complex multiobjective optimization problems based on the NAUTILUS method

2015

Interactive multiobjective optimization methods cannot necessarily be easily used when (industrial) multiobjective optimization problems are involved. There are at least two important factors to be considered with any interactive method: computationally expensive functions and aspects of human behavior. In this paper, we propose a method based on the existing NAUTILUS method and call it the Enhanced NAUTILUS (E-NAUTILUS) method. This method borrows the motivation of NAUTILUS along with the human aspects related to avoiding trading-off and anchoring bias and extends its applicability for computationally expensive multiobjective optimization problems. In the E-NAUTILUS method, a set of Pareto…

ta113Decision support systemMathematical optimizationInformation Systems and ManagementOptimization problemMultiple criteria optimizationGeneral Computer ScienceComputer sciencePareto principleTrading-offManagement Science and Operations ResearchSpace (commercial competition)Multiple objective programmingMulti-objective optimizationIndustrial and Manufacturing EngineeringSet (abstract data type)Modeling and SimulationPoint (geometry)Computational costInteractive methodsEuropean Journal of Operational Research
researchProduct

DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization

2021

Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the underlying trade-offs among the conflicting objective functions in the problem and adjust preferences during the solution process. Incorporating preference information allows computing only solutions that are interesting to the decision maker, decreasing computation time significantly. Thus, interactive methods have many strengths making them viable for various applications. However, there is a lack of existing software frameworks to apply and experiment with interactive …

0209 industrial biotechnologylineaarinen optimointiPareto optimizationGeneral Computer Sciencemulti-criteria decision makingComputer sciencepäätöksentekoevoluutiolaskenta02 engineering and technologyData-driven multiobjective optimizationcomputer.software_genrenonlinear optimizationMulti-objective optimizationData modelingopen source softwareavoin lähdekoodi020901 industrial engineering & automationSoftwareoptimointi0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceUse casecomputer.programming_languageGraphical user interfacepareto-tehokkuusbusiness.industryGeneral Engineeringinteractive methodsModular designPython (programming language)monitavoiteoptimointiTK1-9971Software frameworkdata-driven multiobjective optimizationevolutionary computation020201 artificial intelligence & image processingElectrical engineering. Electronics. Nuclear engineeringbusinessSoftware engineeringcomputerIEEE Access
researchProduct

Designing empirical experiments to compare interactive multiobjective optimization methods

2022

Interactive multiobjective optimization methods operate iteratively so that a decision maker directs the solution process by providing preference information, and only solutions of interest are generated. These methods limit the amount of information considered in each iteration and support the decision maker in learning about the trade-offs. Many interactive methods have been developed, and they differ in technical aspects and the type of preference information used. Finding the most appropriate method for a problem to be solved is challenging, and supporting the selection is crucial. Published research lacks information on the conducted experiments’ specifics (e.g. questions asked), makin…

vertailuvuorovaikutuskäytettävyyspäätöksentekokehittämineninteractive methodsexperimental studytavoitteetmenetelmätsuunnitteluhuman decision makerstukeminenmultiple objective programmingtutkimusperformance comparison
researchProduct

An Artificial Decision Maker for Comparing Reference Point Based Interactive Evolutionary Multiobjective Optimization Methods

2021

Comparing interactive evolutionary multiobjective optimization methods is controversial. The main difficulties come from features inherent to interactive solution processes involving real decision makers. The human can be replaced by an artificial decision maker (ADM) to evaluate methods quantitatively. We propose a new ADM to compare reference point based interactive evolutionary methods, where reference points are generated in different ways for the different phases of the solution process. In the learning phase, the ADM explores different parts of the objective space to gain insight about the problem and to identify a region of interest, which is studied more closely in the decision phas…

aspiration levelsMathematical optimizationComputer sciencepäätöksenteko02 engineering and technologySpace (commercial competition)interactive methodsDecision makerMulti-objective optimizationmonitavoiteoptimointidecision makingmany-objective optimizationoptimointiRegion of interestmonimuuttujamenetelmät020204 information systemsPerformance comparison0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingperformance comparison
researchProduct