Search results for "Interatomic potential"
showing 9 items of 19 documents
The melting behaviour of small silicon clusters
1994
Abstract We report an analysis of the melting behaviour of small silicon clusters interacting via a nonlinear interatomic potential with four-body terms. The analysis shows, by means of Monte Carlo and molecular dynamics simulations, that the small silicon clusters undergo, in a vacuum, structural changes from a solid rigid state to a liquid-like state. The melting temperature exhibits a strong variation with cluster size.
Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures
2012
We present a detailed description of the semi-quantum approach to the molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the quantum effects are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of the thermal properties of different low-dimensional nanostructures. Within this approach, we simulate the specific heat and heat transport in carbon n…
Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions
2007
We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom d…
Quantum Thermodynamic Perturbation Theory for Fermions
1993
The quantum version of classical thermodynamic perturbation theory is applied to the ground state of a fluid of spin-1/2 fermions interacting via the Aziz interatomic potential, as a model for liquid 3He. Results from the rapidly-convergent sixth-order calculation about the unperturbed hard-sphere fluid for energy, density and sound velocity at the zero-pressure liquid equilibrium point, lie within a few percent of computer-simulation values and appreciably closer than the most elaborate recent variational calculation. The procedure explicitly avoids crossing phase boundaries and is relatively insensitive to varying the close-packing density up to a value somewhat below the maximum possible…
High-Pressure, High-Temperature Phase Diagram of Calcium Fluoride from Classical Atomistic Simulations
2013
We study the phase diagram of calcium fluoride (CaF2) under pressure using classical molecular dynamics simulations performed with a reliable pairwise interatomic potential of the Born−Mayer−Huggins form. Our results obtained under conditions 0 ≤ P ≲ 20 GPa and 0 ≤ T ≲ 4000 K reveal a rich variety of multiphase boundaries involving different crystal, superionic, and liquid phases, for all of which we provide an accurate parametrization. Interestingly, we predict the existence of three special triple points (i.e., solid−solid−superionic, solid−superionic−superionic, and superionic−superionic−liquid coexisting states) within a narrow and experimentally accessible thermodynamic range of 6 ≤ P …
Introduction: Purpose and Scope of this Volume, and Some General Comments
2002
In recent years the method of “computer simulation” has started something like a revolution of science: the old division of physics (as well as chemistry, biology, etc.) into “experimental” and “theoretical” branches is no longer really complete. Rather, “computer simulation” has become a third branch complementary to the first two traditional approaches.
Casimir-Polder forces, boundary conditions and fluctuations
2008
We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.
A tight-binding potential for the simulation of solid and liquid iodine
2003
In this work, we suggest an interatomic potential for iodine applicable to the simulation of the condensed phases of the halogen within the temperature and density range accessible to experiments. The potential includes an attractive term that is partitioned into directional chemical bonding with a many-particle character and a pairwise interaction. Despite its simplicity, the potential reproduces the crystal structure of solid iodine, the presence of atomic phases with increasing pressure, and the metallic or insulating character of the solid phases. Finally, we present preliminary simulation results for fluid iodine.
A Multisite Molecular Mechanism for Baeyer-Villiger Oxidations on Solid Catalysts Using Environmentally Friendly H2O2 as Oxidant
2005
The molecular mechanism of the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide catalyzed by the Sn-beta zeolite has been investigated by combining molecular mechanics, quantum-chemical calculations, spectroscopic, and kinetic techniques. A theoretical study of the location of Sn in zeolite beta was performed by using atomistic force-field techniques to simulate the local environment of the active site. An interatomic potential for Sn/Si zeolites, which allows the simulation of zeolites containing Sn in a tetrahedral environment, has been developed by fitting it to the experimental properties of quartz and SnO 2 (rutile). The tin active site has been modeled by means of a S…