Search results for "Interferometer"

showing 10 items of 109 documents

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

The 2009 Edition of the GEISA Spectroscopic Database

2011

The updated 2009 edition of the spectroscopic database GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques; Management and Study of Atmospheric Spectroscopic Information) is described in this paper. GEISA is a computer-accessible system comprising three independent sub-databases devoted, respectively, to: line parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031cm-1.The successful performances of the new …

010504 meteorology & atmospheric sciencesMeteorologyTélédétectionPhysique atomique et moléculaireMolecular spectroscopyInfrared atmospheric sounding interferometercomputer.software_genre01 natural sciencesLine parametersAtmospheric radiative transfer0103 physical sciences010303 astronomy & astrophysicsSpectroscopy0105 earth and related environmental sciencesRemote sensingWeb site[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]RadiationSpectroscopic database[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]DatabaseGEISAOptically activeAtmospheric aerosolsMolecular spectroscopyAtomic and Molecular Physics and Optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryOn boardSpectroscopie [électromagnétisme optique acoustique][ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryEarth's and planetary atmospheresEnvironmental scienceAtmospheric absorptionAtmospheric absorptionCross-sectionscomputer
researchProduct

First M87 Event Horizon Telescope Results. II. Array and Instrumentation

2019

The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of th…

010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizonAstronomyAstrophysics::High Energy Astrophysical Phenomenainterferometers [instrumentation]black hole physicsFOS: Physical sciencesgalaxies: individualGeneral Relativity and Quantum Cosmology (gr-qc)galaxies: individual: M8701 natural sciencesGeneral Relativity and Quantum Cosmologygalaxies: individual (M87)instrumentation: interferometer0103 physical sciencesVery-long-baseline interferometryAngular resolutionInstrumentation (computer programming)instrumentation: interferometers010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy Astrophysics0105 earth and related environmental scienceshigh angular resolution [echniques]Event Horizon TelescopePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Supermassive black holeGalaxy: centerhigh angular resolution [techniques]Astronomytechniques: high angular resolutiongravitational lensing: strongAstronomy and Astrophysicscenter [Galaxy]Hydrogen maserblack hole physicAstrophysics - Astrophysics of Galaxiesechniques: high angular resolutionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)strong [gravitational lensing]MillimeterAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]The Astrophysical Journal Letters
researchProduct

Nonlinear statistical retrieval of surface emissivity from IASI data

2017

Emissivity is one of the most important parameters to improve the determination of the troposphere properties (thermodynamic properties, aerosols and trace gases concentration) and it is essential to estimate the radiative budget. With the second generation of infrared sounders, we can estimate emissivity spectra at high spectral resolution, which gives us a global view and long-term monitoring of continental surfaces. Statistically, this is an ill-posed retrieval problem, with as many output variables as inputs. We here propose nonlinear multi-output statistical regression based on kernel methods to estimate spectral emissivity given the radiances. Kernel methods can cope with high-dimensi…

0211 other engineering and technologies020206 networking & telecommunications02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometerLeast squaresKernel method13. Climate actionKernel (statistics)Linear regression0202 electrical engineering electronic engineering information engineeringEmissivityKernel regressionPhysics::Atmospheric and Oceanic Physics021101 geological & geomatics engineeringRemote sensingMathematics2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Sound conversion phenomena at the free surface of liquid helium. I. Calculation of the coefficients of reflection, transmission, and transformation o…

1980

On the basis of a set of boundary conditions describing quite generally mass and energy transport processes across the free surface of helium II, the acoustic coefficients of reflection, transmission, and transformation of first sound, second sound, and the sound wave propagating in the vapor are calculated in the case of perpendicular incidence of sound waves against the liquid-vapor phase boundary. Considering rigorously the influences of the Onsager surface coefficients, the isobaric thermal expansion coefficients, and the thermal conductivities of the liquid and the vapor, we derive sets of equations from which the acoustic coefficients are determined numerically. For estimations, simpl…

Absorption (acoustics)Materials scienceAcoustic interferometerMechanicsAcoustic waveAcoustic source localizationCondensed Matter PhysicsAtomic and Molecular Physics and OpticsComputer Science::SoundFree surfaceSecond soundReflection (physics)General Materials ScienceAtomic physicsSound speed gradientJournal of Low Temperature Physics
researchProduct

ZERODUR based optical systems for quantum gas experiments in space

2019

Abstract Numerous quantum technologies make use of a microgravity environment e.g. in space. Operating in this extreme environment makes high demands on the experiment and especially the laser system regarding miniaturization and power consumption as well as mechanical and thermal stability. In our systems, optical modules consisting of ZERODUR® based optical benches with free-space optics are combined with fiber components. Suitability of the technology has been demonstrated in the successful sounding rocket missions FOKUS, KALEXUS and MAIUS-1. Here, we report on our toolkit for stable optical benches including mounts, fixed and adjustable mirrors as well as polarization maintaining fiber …

Atom interferometerComputer scienceAtomic Physics (physics.atom-ph)Aerospace EngineeringPhysics::OpticsFOS: Physical sciencesPolarization-maintaining optical fiberZerodur02 engineering and technology01 natural sciencesPhysics - Atomic Physicslaw.invention0203 mechanical engineeringlaw0103 physical sciencesInternational Space StationMiniaturizationAerospace engineering010303 astronomy & astrophysics020301 aerospace & aeronauticsSounding rocketbusiness.industryLaserQuantum technologybusinessPhysics - OpticsOptics (physics.optics)
researchProduct

Space-borne Bose–Einstein condensation for precision interferometry

2018

Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interf…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesSpace (mathematics)01 natural sciencesPhysics - Atomic Physicslaw.invention010309 opticslawLaser cooling0103 physical sciencesAstronomical interferometer010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsMultidisciplinaryBragg's lawinterferometryBose-EinsteinComputational physicsInterferometryQuantum Gases (cond-mat.quant-gas)QuasiparticleAtomic physicsCondensed Matter - Quantum GasesBose–Einstein condensateNature
researchProduct

Er:Cr:YSGG laser with electrooptic PLZT ceramics Q-switching Fabry-Perot interferometer output mirror

2001

Summary form only given. Q-switching of Er:Cr:YSGG laser with transparent PLZT ceramics electro-optic modulators was reported previously. The extremely large quadratic EO effect in PLZT allows to build small size moderate control voltages. The high induced birefringence in PLZT results from an essential contribution to polarization (and consequently to the birefringence) of processes with longer relaxation times up to seconds, corresponding to the Er:Cr:YSGG laser operating rate. PLZT ceramics have also a high value of the refractive index (n /spl ap/ 2.2-2.3 for /spl lambda/ = 3 /spl mu/m, slightly depending on PLZT composition and temperature) and thus considerable Fresnel reflections R/s…

BirefringenceKerr effectMaterials sciencebusiness.industrychemistry.chemical_elementLaserQ-switchinglaw.inventionErbiumOpticschemistrylawSapphireOptoelectronicsbusinessRefractive indexFabry–Pérot interferometerTechnical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170)
researchProduct

Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data

2019

In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one…

Computer scienceInfrared Atmospheric Sounding Interferometer (IASI)Spectral Transforms0211 other engineering and technologies02 engineering and technologyData_CODINGANDINFORMATIONTHEORYLossy compressionInfrared atmospheric sounding interferometer (IASI)Kernel MethodsElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringbusiness.industryDimensionality reductionLossy CompressionJPEG 2000Kernel methodsPattern recognitioncomputer.file_formatJoint Photographic Experts Group (JPEG) 2000RegressionUncompressed videoSpectral transformsKernel methodStatistically based retrievalJPEG 2000General Earth and Planetary SciencesLossy compressionArtificial intelligencebusinessStatistically Based RetrievalcomputerSmoothingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Design of a compact diode laser system for dual-species atom interferometry with rubidium and potassium in space

2017

We report on a micro-integrated high power diode laser based system for the MAIUS II/III missions. The laser system features fiber coupled and frequency stabilized external cavity diode lasers (ECDL) for laser cooling, Bose-Einstein condensate (BEC) generation and dual species atom interferometry with rubidium and potassium on board a sounding rocket.

Condensed Matter::Quantum GasesAtom interferometerMaterials scienceSounding rocketbusiness.industryPotassiumPhysics::Opticschemistry.chemical_elementLaser01 natural scienceslaw.inventionRubidium010309 opticschemistrylawLaser cooling0103 physical sciencesOptoelectronicsPhysics::Atomic Physics010306 general physicsbusinessBose–Einstein condensateDiode2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)
researchProduct