Search results for "Inuit"

showing 10 items of 490 documents

Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results

2014

Abstract We give some fixed point theorems in the setting of metric spaces or partial metric spaces endowed with a finite number of graphs. The presented results extend and improve several well-known results in the literature. In particular, we discuss a Caristi type fixed point theorem in the setting of partial metric spaces, which has a close relation to Ekelandʼs principle.

Discrete mathematicsMetric spaceUniform continuityInjective metric spaceCaristi's fixed point theorem Ekeland's principle graph metric space partial metric space.Metric mapMetric treeGeometry and TopologyEquivalence of metricsSettore MAT/03 - GeometriaConvex metric spaceMathematicsIntrinsic metric
researchProduct

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

2008

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

Discrete mathematicsNon-smooth critical point theory minmax theorems symmetric functionsGeneral MathematicsRegular polygonEven and odd functionsDifferentiable functionLipschitz continuityCritical point (mathematics)MathematicsGlasgow Mathematical Journal
researchProduct

Rademacher Theorem for Fréchet spaces

2010

Abstract Let X be a separable Frechet space. In this paper we define a class A of null sets in X that is properly contained in the class of Aronszajn null sets, and we prove that a Lipschitz map from an open subset of X into a Gelfand-Frechet space is Gateaux differentiable outside a set belonging to A. This is an extension to Frechet spaces of a result (see [PZ]) due to D. Preiss and L. Zajicek.

Discrete mathematicsNull (mathematics)Space (mathematics)Lipschitz continuitySeparable spaceCombinatoricsRademacher's theoremMathematics (miscellaneous)Fréchet spaceSettore MAT/05 - Analisi MatematicaDifferentiable functionMetric differentialMathematicsLipschitz maps Gateaux differentiability Rademacher theorem.
researchProduct

On the solutions to 1-Laplacian equation with L1 data

2009

AbstractIn the present paper we study the behaviour, as p goes to 1, of the renormalized solutions to the problems(0.1){−div(|∇up|p−2∇up)=finΩ,up=0on∂Ω, where p>1, Ω is a bounded open set of RN (N⩾2) with Lipschitz boundary and f belongs to L1(Ω). We prove that these renormalized solutions pointwise converge, up to “subsequences,” to a function u. With a suitable definition of solution we also prove that u is a solution to a “limit problem.” Moreover we analyze the situation occurring when more regular data f are considered.

Discrete mathematicsPointwise1-Laplace operatorRenormalized solutionsOpen setBoundary (topology)Function (mathematics)Nonlinear elliptic equationsLipschitz continuityRenormalized solutionBounded functionSummable dataLimit (mathematics)L1-data1Laplce operatorLaplace operatorAnalysisMathematicsJournal of Functional Analysis
researchProduct

Specification on the interval

1997

We study the consequences of discontinuities on the specification property for interval maps. After giving a necessary and sufficient condition for a piecewise monotonic, piecewise continuous map to have this property, we show that for a large and natural class of families of such maps (including the β \beta -transformations), the set of parameters for which the specification property holds, though dense, has zero Lebesgue measure. Thus, regarding the specification property, the general case is at the opposite of the continuous case solved by A.M. Blokh (Russian Math. Surveys 38 (1983), 133–134) (for which we give a proof).

Discrete mathematicsProperty (philosophy)Lebesgue measureApplied MathematicsGeneral MathematicsSymbolic dynamicsPiecewiseMonotonic functionInterval (mathematics)Classification of discontinuitiesNatural classMathematicsTransactions of the American Mathematical Society
researchProduct

Multi-valued $$F$$ F -contractions in 0-complete partial metric spaces with application to Volterra type integral equation

2013

We study the existence of fixed points for multi-valued mappings that satisfy certain generalized contractive conditions in the setting of 0-complete partial metric spaces. We apply our results to the solution of a Volterra type integral equation in ordered 0-complete partial metric spaces.

Discrete mathematicsPure mathematicsAlgebra and Number Theory0-completenepartial metric spacesApplied MathematicsInjective metric spaceclosed multi-valued mappingT-normEquivalence of metricsIntrinsic metricConvex metric spaceComputational MathematicsUniform continuityMetric spacefixed pointSettore MAT/05 - Analisi MatematicaFréchet spaceGeometry and TopologyF-contractionAnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
researchProduct

Lipschitz operator ideals and the approximation property

2016

[EN] We establish the basics of the theory of Lipschitz operator ideals with the aim of recovering several classes of Lipschitz maps related to absolute summability that have been introduced in the literature in the last years. As an application we extend the notion and main results on the approximation property for Banach spaces to the case of metric spaces. (C) 2015 Elsevier Inc. All rights reserved.

Discrete mathematicsPure mathematicsApproximation propertyLipschitz mappingApplied Mathematics010102 general mathematicsBanach space010103 numerical & computational mathematicsLipschitz operator idealLipschitz continuity01 natural sciencesMetric spaceOperator (computer programming)Lipschitz domainLipschitz absolutely summing operatorsMetric mapApproximation property0101 mathematicsMATEMATICA APLICADAAnalysisMathematics
researchProduct

Remarks on G-Metric Spaces

2013

In 2005, Mustafa and Sims (2006) introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric) G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.

Discrete mathematicsPure mathematicsArticle Subjectlcsh:MathematicsInjective metric spaceEquivalence of metricslcsh:QA1-939Intrinsic metricConvex metric spaceUniform continuityMetric spaceSettore MAT/05 - Analisi MatematicaG-metric space metric space fixed pointMetric (mathematics)Metric mapMathematicsInternational Journal of Analysis
researchProduct

Multi-valued F-contractions and the solution of certain functional and integral equations

2013

Wardowski [Fixed Point Theory Appl., 2012:94] introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, we will present some fixed point results for closed multi-valued F-contractions or multi-valued mappings which satisfy an F-contractive condition of Hardy-Rogers-type, in the setting of complete metric spaces or complete ordered metric spaces. An example and two applications, for the solution of certain functional and integral equations, are given to illustrate the usability of the obtained results.

Discrete mathematicsPure mathematicsGeneral MathematicsInjective metric spacemetric spaceFixed-point theoremFixed pointFixed-point propertyConvex metric spaceUniform continuityClosed multi-valued F-contractionfixed pointFréchet spaceF-contractive condition of Hardy-Rogers-typeSettore MAT/05 - Analisi MatematicaContraction mappingMathematicsordered metric spaces
researchProduct

On a normal form of symmetric maps of [0, 1]

1980

A class of continuous symmetric mappings of [0, 1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.

Discrete mathematicsPure mathematicsLebesgue measureLebesgue's number lemmaStatistical and Nonlinear Physics58F20Absolute continuityLebesgue integrationLebesgue–Stieltjes integrationsymbols.namesakeNonlinear system28D05symbolsInvariant (mathematics)Borel measureMathematical PhysicsMathematicsCommunications in Mathematical Physics
researchProduct