Search results for "Inverse"

showing 10 items of 630 documents

Anisotropic Sobolev homeomorphisms

2011

Let › ‰ R 2 be a domain. Suppose that f 2 W 1;1 loc (›;R 2 ) is a homeomorphism. Then the components x(w), y(w) of the inverse f i1 = (x;y): › 0 ! › have total variations given by jryj(› 0 ) = › fl fl @f fl fl dz; jrxj(› 0 ) = › fl fl @f @y fl fl dz:

Sobolev spacePure mathematicsGeneral MathematicsA domainInverseSobolev homeomorphismsAnisotropyHomeomorphismMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation

2017

International audience; We study numerically the evolution of perturbed Korteweg-de Vries solitons and of well localized initial data by the Novikov-Veselov (NV) equation at different levels of the 'energy' parameter E. We show that as |E| -> infinity, NV behaves, as expected, similarly to its formal limit, the Kadomtsev-Petviashvili equation. However at intermediate regimes, i.e. when |E| is not very large, more varied scenarios are possible, in particular, blow-ups are observed. The mechanism of the blow-up is studied.

Soliton stability[ MATH ] Mathematics [math]media_common.quotation_subjectBlow-upInverse scatteringMathematics::Analysis of PDEsNonzero energyFOS: Physical sciencesGeneral Physics and Astronomy2-dimensional schrodinger operator01 natural sciencesStability (probability)Instability010305 fluids & plasmasMathematics - Analysis of PDEs[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: MathematicsLimit (mathematics)0101 mathematics[MATH]Mathematics [math]Nonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsLine (formation)Mathematicsmedia_commonMathematical physicsNovikov–Veselov equationNonlinear Sciences - Exactly Solvable and Integrable SystemsKadomtsev-petviashvili equationsApplied Mathematics010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]InstabilityStatistical and Nonlinear PhysicsMathematical Physics (math-ph)InfinityNonlinear Sciences::Exactly Solvable and Integrable SystemsWell-posednessNovikov Veselov equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Energy (signal processing)Analysis of PDEs (math.AP)
researchProduct

2018

Electrocardiographic imaging (ECGI) strongly relies on a priori assumptions and additional information to overcome ill-posedness. The major challenge of obtaining good reconstructions consists in finding ways to add information that effectively restricts the solution space without violating properties of the sought solution. In this work, we attempt to address this problem by constructing a spatio-temporal basis of body surface potentials (BSP) from simulations of many focal excitations. Measured BSPs are projected onto this basis and reconstructions are expressed as linear combinations of corresponding transmembrane voltage (TMV) basis vectors. The novel method was applied to simulations o…

Spatial correlationFocus (geometry)Basis (linear algebra)GeodesicPhysiology0206 medical engineering02 engineering and technology030204 cardiovascular system & hematologyInverse problem020601 biomedical engineeringCorrelation03 medical and health sciences0302 clinical medicinePhysiology (medical)A priori and a posterioriLinear combinationAlgorithmMathematicsFrontiers in Physiology
researchProduct

30 years of finite-gap integration theory

2007

The method of finite-gap integration was created to solve the periodic KdV initial problem. Its development during last 30 years, combining the spectral theory of differential and difference operators with periodic coefficients, the algebraic geometry of compact Riemann surfaces and their Jacobians, the Riemann theta functions and inverse problems, had a strong impact on the evolution of modern mathematics and theoretical physics. This article explains some of the principal historical points in the creation of this method during the period 1973–1976, and briefly comments on its evolution during the last 30 years.

Spectral theoryGeneral MathematicsRiemann surfaceMathematical analysisGeneral EngineeringGeneral Physics and AstronomyTheta functionAlgebraic geometryInverse problemAlgebraRiemann hypothesissymbols.namesakesymbolsKorteweg–de Vries equationDifferential (mathematics)MathematicsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

Discrete-Time Periodic Wavelet Packets

2014

Direct and inverse wavelet and wavelet packet transforms of a spline are implemented by filtering the spline’s coordinates by two-channel critically sampled p-filter banks. In this chapter, those p-filter banks are utilized for processing discrete-time signals. The p-filter banks generate discrete-time wavelets and wavelet packets in the spaces of 1D and 2D periodic signals.

Spline (mathematics)WaveletDiscrete time and continuous timeComputer scienceNetwork packetMathematicsofComputing_NUMERICALANALYSISInverseData_CODINGANDINFORMATIONTHEORYAlgorithmWavelet packet decomposition
researchProduct

Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing

2004

SummaryWe discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the ‘Global ozone monitoring of occultation of stars’ instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for…

Statistics and Probability010504 meteorology & atmospheric sciencesAttenuationInversion (meteorology)Markov chain Monte CarloDensity estimationInverse problem01 natural sciencesOccultation010104 statistics & probabilitysymbols.namesakeMetropolis–Hastings algorithmStatisticsPrior probabilitysymbols0101 mathematicsStatistics Probability and UncertaintyAlgorithm0105 earth and related environmental sciencesMathematicsJournal of the Royal Statistical Society Series B: Statistical Methodology
researchProduct

Fractal eigenstates in disordered systems

1990

Abstract The wave functions of the non-interacting electrons in disordered systems described by a tight-binding model with site-diagonal disorder are investigated by means of the inverse participation ratio. The wave functions are shown to be fractal objects. In three-dimensional samples, a critical fractal dimension can be defined for the mobility edge in the band centre, which yields the mobility edge trajectory in the whole energy range in good agreement with previous calculations based on the investigation of the exponentially decaying transmission coefficient.

Statistics and ProbabilityMathematical analysisInverseElectronCondensed Matter PhysicsFractal dimensionsymbols.namesakeFractalFractal derivativesymbolsTransmission coefficientStatistical physicsWave functionHamiltonian (quantum mechanics)MathematicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Point process diagnostics based on weighted second-order statistics and their asymptotic properties

2008

A new approach for point process diagnostics is presented. The method is based on extending second-order statistics for point processes by weighting each point by the inverse of the conditional intensity function at the point’s location. The result is generalized versions of the spectral density, R/S statistic, correlation integral and K-function, which can be used to test the fit of a complex point process model with an arbitrary conditional intensity function, rather than a stationary Poisson model. Asymptotic properties of these generalized second-order statistics are derived, using an approach based on martingale theory.

Statistics and ProbabilityMathematical optimizationSpectral densityInverseResidual analysis point process second-order analysis conditional intensity functionResidualPoint processWeightingCorrelation integralApplied mathematicsPoint (geometry)Settore SECS-S/01 - StatisticaStatisticMathematicsAnnals of the Institute of Statistical Mathematics
researchProduct

Fractional calculus approach to the statistical characterization of random variables and vectors

2009

Fractional moments have been investigated by many authors to represent the density of univariate and bivariate random variables in different contexts. Fractional moments are indeed important when the density of the random variable has inverse power-law tails and, consequently, it lacks integer order moments. In this paper, starting from the Mellin transform of the characteristic function and by fractional calculus method we present a new perspective on the statistics of random variables. Introducing the class of complex moments, that include both integer and fractional moments, we show that every random variable can be represented within this approach, even if its integer moments diverge. A…

Statistics and ProbabilityMellin transformStatistical Mechanics (cond-mat.stat-mech)Characteristic function (probability theory)Multivariate distributionMultivariate random variableMathematical analysisFOS: Physical sciencesMoment-generating functionCondensed Matter PhysicsFractional calculusFractional and complex moments; Multivariate distributions; Power-law tails; Inverse Mellin transformFractional and complex momentIngenieurwissenschaftenApplied mathematicsddc:620Inverse Mellin transformSettore ICAR/08 - Scienza Delle CostruzioniRandom variableCondensed Matter - Statistical MechanicsMathematicsInteger (computer science)Taylor expansions for the moments of functions of random variablesPower-law tail
researchProduct

Some extensions of multivariate sliced inverse regression

2007

Multivariate sliced inverse regression (SIR) is a method for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we extend the existing approaches, based on the usual SIR I which only uses the inverse regression curve, to methods using properties of the inverse conditional variance. Contrary to the existing ones, these new methods are not blind for symmetric dependencies and rely on the SIR II or SIRα. We also propose their corresponding pooled slicing versions. We illustrate the usefulness of these approaches on simulation studies.

Statistics and ProbabilityMultivariate statisticsApplied MathematicsDimensionality reductionInverseOutcome variableModeling and SimulationStatisticsSliced inverse regressionStatistics::MethodologyStatistics Probability and UncertaintyConditional varianceRegression problemsMathematicsRegression curveJournal of Statistical Computation and Simulation
researchProduct