Search results for "Inverse"
showing 10 items of 630 documents
Anisotropic Sobolev homeomorphisms
2011
Let › ‰ R 2 be a domain. Suppose that f 2 W 1;1 loc (›;R 2 ) is a homeomorphism. Then the components x(w), y(w) of the inverse f i1 = (x;y): › 0 ! › have total variations given by jryj(› 0 ) = › fl fl @f fl fl dz; jrxj(› 0 ) = › fl fl @f @y fl fl dz:
Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation
2017
International audience; We study numerically the evolution of perturbed Korteweg-de Vries solitons and of well localized initial data by the Novikov-Veselov (NV) equation at different levels of the 'energy' parameter E. We show that as |E| -> infinity, NV behaves, as expected, similarly to its formal limit, the Kadomtsev-Petviashvili equation. However at intermediate regimes, i.e. when |E| is not very large, more varied scenarios are possible, in particular, blow-ups are observed. The mechanism of the blow-up is studied.
2018
Electrocardiographic imaging (ECGI) strongly relies on a priori assumptions and additional information to overcome ill-posedness. The major challenge of obtaining good reconstructions consists in finding ways to add information that effectively restricts the solution space without violating properties of the sought solution. In this work, we attempt to address this problem by constructing a spatio-temporal basis of body surface potentials (BSP) from simulations of many focal excitations. Measured BSPs are projected onto this basis and reconstructions are expressed as linear combinations of corresponding transmembrane voltage (TMV) basis vectors. The novel method was applied to simulations o…
30 years of finite-gap integration theory
2007
The method of finite-gap integration was created to solve the periodic KdV initial problem. Its development during last 30 years, combining the spectral theory of differential and difference operators with periodic coefficients, the algebraic geometry of compact Riemann surfaces and their Jacobians, the Riemann theta functions and inverse problems, had a strong impact on the evolution of modern mathematics and theoretical physics. This article explains some of the principal historical points in the creation of this method during the period 1973–1976, and briefly comments on its evolution during the last 30 years.
Discrete-Time Periodic Wavelet Packets
2014
Direct and inverse wavelet and wavelet packet transforms of a spline are implemented by filtering the spline’s coordinates by two-channel critically sampled p-filter banks. In this chapter, those p-filter banks are utilized for processing discrete-time signals. The p-filter banks generate discrete-time wavelets and wavelet packets in the spaces of 1D and 2D periodic signals.
Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing
2004
SummaryWe discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the ‘Global ozone monitoring of occultation of stars’ instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for…
Fractal eigenstates in disordered systems
1990
Abstract The wave functions of the non-interacting electrons in disordered systems described by a tight-binding model with site-diagonal disorder are investigated by means of the inverse participation ratio. The wave functions are shown to be fractal objects. In three-dimensional samples, a critical fractal dimension can be defined for the mobility edge in the band centre, which yields the mobility edge trajectory in the whole energy range in good agreement with previous calculations based on the investigation of the exponentially decaying transmission coefficient.
Point process diagnostics based on weighted second-order statistics and their asymptotic properties
2008
A new approach for point process diagnostics is presented. The method is based on extending second-order statistics for point processes by weighting each point by the inverse of the conditional intensity function at the point’s location. The result is generalized versions of the spectral density, R/S statistic, correlation integral and K-function, which can be used to test the fit of a complex point process model with an arbitrary conditional intensity function, rather than a stationary Poisson model. Asymptotic properties of these generalized second-order statistics are derived, using an approach based on martingale theory.
Fractional calculus approach to the statistical characterization of random variables and vectors
2009
Fractional moments have been investigated by many authors to represent the density of univariate and bivariate random variables in different contexts. Fractional moments are indeed important when the density of the random variable has inverse power-law tails and, consequently, it lacks integer order moments. In this paper, starting from the Mellin transform of the characteristic function and by fractional calculus method we present a new perspective on the statistics of random variables. Introducing the class of complex moments, that include both integer and fractional moments, we show that every random variable can be represented within this approach, even if its integer moments diverge. A…
Some extensions of multivariate sliced inverse regression
2007
Multivariate sliced inverse regression (SIR) is a method for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we extend the existing approaches, based on the usual SIR I which only uses the inverse regression curve, to methods using properties of the inverse conditional variance. Contrary to the existing ones, these new methods are not blind for symmetric dependencies and rely on the SIR II or SIRα. We also propose their corresponding pooled slicing versions. We illustrate the usefulness of these approaches on simulation studies.