Search results for "Ising Model"
showing 10 items of 241 documents
Thermodynamic potentials for the infinite range Ising model with strong coupling
2003
Abstract The specific Gibbs free energy has been calculated for the infinite range Ising model with fixed and finite interaction strength. The model shows a temperature driven first-order phase transition that differs from the infinite ranged Ising model with weak coupling. In the temperature-field phase diagram the strong coupling model shows a line of first-order phase transitions that does not end in a critical point.
Phase Transitions in the Multicomponent Widom-Rowlinson Model and in Hard Cubes on the BCC--Lattice
1997
We use Monte Carlo techniques and analytical methods to study the phase diagram of the M--component Widom-Rowlinson model on the bcc-lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M greater or equal 3 there is a ``crystal phase'' for z lying between z_c(M) and z_d(M) while for z > z_d(M) there are M demixed phases each consisting mostly of one species. For M=2 there is a direct second order transition from the gas phase to the demixed phase while for M greater or equal 3 the transition at z_d(M) appears to be first order putting it in the Potts model universality class. For M large, …
Monte Carlo investigations of phase transitions: status and perspectives
2000
Using the concept of finite-size scaling, Monte Carlo calculations of various models have become a very useful tool for the study of critical phenomena, with the system linear dimension as a variable. As an example, several recent studies of Ising models are discussed, as well as the extension to models of polymer mixtures and solutions. It is shown that using appropriate cluster algorithms, even the scaling functions describing the crossover from the Ising universality class to the mean-field behavior with increasing interaction range can be described. Additionally, the issue of finite-size scaling in Ising models above the marginal dimension (d*=4) is discussed.
High-Temperature Series Analysis of the Free Energy and Susceptibility of the 2D Random-Bond Ising Model
1999
We derive high-temperature series expansions for the free energy and susceptibility of the two-dimensional random-bond Ising model with a symmetric bimodal distribution of two positive coupling strengths J_1 and J_2 and study the influence of the quenched, random bond-disorder on the critical behavior of the model. By analysing the series expansions over a wide range of coupling ratios J_2/J_1, covering the crossover from weak to strong disorder, we obtain for the susceptibility with two different methods compelling evidence for a singularity of the form $\chi \sim t^{-7/4} |\ln t|^{7/8}$, as predicted theoretically by Shalaev, Shankar, and Ludwig. For the specific heat our results are less…
The democracy–ochlocracy–dictatorship transition in the Sznajd model and in the Ising model
2005
Abstract Since its introduction in 2000, the Sznajd model has been assumed to simulate a democratic community with two parties. The main flaw in this model is that a Sznajd system freezes in the long term in a non-democratic state, which can be either a dictatorship or a stalemate configuration. Here we show that the Sznajd model has better to be considered as a transition model, transferring a democratic system already at the beginning of a simulation via an ochlocratic scenario, i.e., a regime in which several mobs rule, to a dictatorship, thus reproducing the corresponding Aristotelian theory.
Ordering and demixing transitions in multicomponent Widom-Rowlinson models.
1995
We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not …
ORDERING KINETICS IN QUASI-ONE-DIMENSIONAL ISING-LIKE SYSTEMS
1993
We present results of a Monte Carlo simulation of the kinetics of ordering in the two-dimensional nearest-neighbor Ising model in anL xM geometry with two free boundaries of length M≫L. This model can be viewed as representing an adsorbant on a stepped surface with mean terrace widthL. We follow the ordering kinetics after quenches to temperatures 0.25 ⩽ T/Tc ⩽ 1 starting from a random initial configuration at a coverage ofΘ=0.5 in the corresponding lattice gas picture. The systems evolve in time according to a Glauber kinetics with nonconserved order parameter. The equilibrium structure is given by a one-dimensional sequence of ordered domains. The ordering process evolves from a short ini…
Surface-directed spinodal decomposition: modelling and numerical simulations
1997
We critically review the modelling and simulations of surface-directed spinodal decomposition, namely, the dynamics of phase separation of a critical or near-critical binary mixture in the presence of a surface with a preferential attraction for one of the components of the mixture.
Droplets pinned at chemically inhomogenous substrates: A simulation study of the two-dimensional Ising case
2016
As a simplified model of a liquid nanostripe adsorbed on a chemically structured substrate surface, a two-dimensional Ising system with two boundaries at which surface fields act is studied. At the upper boundary, the surface field is uniformly negative, while at the lower boundary (a distance L apart), the surface field is negative only outside a range of extension b, where a positive surface stabilizes a droplet of the phase with positive magnetization for temperatures T exceeding the critical temperature Tw of the wetting transition of this model. We investigate the local order parameter profiles across the droplet, both in the directions parallel and perpendicular to the substrate, vary…
Surface-induced ordering and disordering in face-centered-cubic alloys: A Monte Carlo study
1996
Using extensive Monte Carlo simulations we have studied phase transitions in a fcc model with antiferromagnetic nearest-neighbor couplings $J$ in the presence of different free surfaces which lead either to surface-induced order or to surface-induced disorder. Our model is a prototype for CuAu-type ordering alloys and shows a strong first-order bulk transition at a temperature $\frac{k{T}_{\mathrm{cb}}}{|J|}=1.738005(50)$. For free (100) surfaces, we find a continuous surface transition at a temperature ${T}_{\mathrm{cs}}g{T}_{\mathrm{cb}}$ exhibiting critical exponents of the two-dimensional Ising model. Surface-induced ordering occurs as the temperature approaches ${T}_{\mathrm{cb}}$ and …