Search results for "Isobar"
showing 10 items of 210 documents
Breakdown of the Isobaric Multiplet Mass Equation atA=33,T=3/2
2001
Mass measurements on ${}^{33,34,42,43}\mathrm{Ar}$ were performed using the Penning trap mass spectrometer ISOLTRAP and a newly constructed linear Paul trap. This arrangement allowed us, for the first time, to extend Penning trap mass measurements to nuclides with half-lives below one second ( ${}^{33}\mathrm{Ar}$: ${T}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}174\mathrm{ms}$). A mass accuracy of about ${10}^{\ensuremath{-}7}$ $(\ensuremath{\delta}m\ensuremath{\approx}4\mathrm{keV})$ was achieved for all investigated nuclides. The isobaric multiplet mass equation was checked for the $A\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}33$, $T\phantom{\rule{0ex}{0ex}}=\phantom…
Contribution to the study of framework modification of SAPO-34 and SAPO-37 upon water adsorption by thermogravimetry
1999
Abstract The adsorption–desorption of water vapor in SAPO-34 and SAPO-37 is followed in isobar conditions ( P H 2 O =17.6 mbar ) by thermogravimetry at temperatures from 20°C to 400°C. The phenomenon is reversible in SAPO-34 but not in SAPO-37. The rise in water uptake is the highest at around 60–70°C, i.e. in range where an attack of the frameworks was previously reported. The reversibility (or not) of water adsorption–desorption uptake is linked to this reversible (or not) framework modification. The kinetics of desorption in SAPO-34 is strongly slowed down between 40°C and 60°C. This suggests that the full restructuration of the framework requires some time (700 min in the experimental c…
Mean-Field Calculation Based on Proton-Neutron Mixed Energy Density Functionals
2014
We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, single-particle states are generalized as mixtures of proton and neutron components. The model assumes that the Skyrme EDF is invariant under the rotation in isospin space and the Coulomb force is the only source of the isospin symmetry breaking. To control the isospin of the system, we employ the isocranking method, which is analogous to the standard cranking approach used for describing high-spin states. Here, we present results of the isocranking calculations performed for the isobaric analog states in $A = 40$ and $A = 54$ nuc…
Production of radioactive Ag ion beams with a chemically selective laser ion source
1997
Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.
Isobar suppression in AMS using laser photodetachment
2008
Abstract We are investigating the possibility of using laser photodetachment of negative atomic and molecular ions as an additional isobaric selection filter in accelerator mass spectrometry. The aim of this study is to find a possibility to further improve the detection limit for long-lived heavy radionuclides at AMS facilities. We will focus on the astrophysical relevant radionuclide 182Hf, which is one of the isotopes measured with the 3 MV tandem AMS facility VERA (Vienna Environmental Research Accelerator) at the University of Vienna. Laser-induced isobar suppression is also of importance for radioactive-beam facilities. The present detection limit for measuring the isotope ratio 182Hf…
Resonant laser ionization mass spectrometry: An alternative to AMS?
2000
Resonant laser ionization mass spectrometry (RIMS) has developed into a versatile experimental method particularly concerning applications for highly selective ultratrace analysis. Apart from providing nearly complete isobaric suppression and high overall efficiency, the possibility for combining optical isotopic selectivity with that of the mass spectrometer leads to remarkable specifications. The widespread analytical potential and applicability of different techniques based on resonant laser ionization is demonstrated in investigations on stable and radioactive ultratrace isotopes with the focus on applications which require high selectivity, concerning, e.g., the noble gas isotopes 81,8…
A new pulsed release method for element selective production of neutron rich isotopes near 208Pb
1998
Abstract A new method to reduce the isobaric contamination problem for the production of neutron rich Bi, Pb and Tl nuclei at on-line mass separators, based on the pulsed release of these radioactive species, is presented. The results of a feasibility study are reported.
Decays of T Z = − 3/2 nuclei 23Al, 31Cl, and 41Ti
2012
This article gives an overview on the decay spectroscopy of T Z = − 3/2 nuclei 23Al, 31Cl, and 41Ti performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The results of the IGISOL experiments are compared to the experimental results that have been published since. The isobaric multiplet mass equation (IMME) has been studied for the T = 3/2 quartets at A = 23 and A = 31. For 41Ti, a detailed comparison to the Gamow–Teller strengths obtained for the analog transitions via charge-exchange reactions has been done. Further improvements in the experimental instrumentation and methods and possible implementations for studying T Z = − 3/2 nuclei at the new IGISOL facility are di…
Eta and Etaprime Photoproduction on the Nucleon with the Isobar Model EtaMAID2018
2019
The isobar model EtaMAID has been updated with new and high precision data for eta and etaprime photoproduction on protons and neutrons from MAMI, ELSA, GRAAL and CLAS. The background is described in a recently developed Regge-cut model, and for the resonance part the whole list of nucleon resonances has been investigated with 21 N* states contributing to eta photoproduction and 12 N* states contributing to etaprime photoproduction. A new approach is discussed to avoid double counting in the overlap region of Regge and resonances. A comparison is done among four newly updated partial waves analyses for observables and partial waves. Finally, the possibility of a narrow resonance near W=1900…
The radiative decay of the Lambda(1405) and its two-pole structure
2007
We evaluate theoretically the radiative decay widths into $\gamma\Lambda$ and $\gamma\Sigma^0$ of the two poles of the $\Lambda(1405)$ found in chiral unitary theories and we find quite different results for each of the two poles. We show that, depending on which reaction is used to measure the $\Lambda(1405)$ radiative decays, one gives more weight to one or the other pole, resulting in quite different shapes in the $\gamma\Lambda(\Sigma^0)$ invariant mass distributions. Our results for the high-energy pole agree with those of the empirical determination of the $\gamma\Lambda$ and $\gamma\Sigma^0$ radiative widths (based on an isobar model fitting of the $K^-p$ atom data), which are someti…