Search results for "Isobutylene"
showing 5 items of 5 documents
Synthesis of Linear and Star-Shaped Block Copolymers of Isobutylene and Methacrylates by Combination of Living Cationic and Anionic Polymerizations
1998
A new synthetic route for the preparation of polyisobutylene (PIB)-based linear and star-shaped block copolymers was developed by combining living carbocationic and anionic polymerizations. Living PIB chains were quantitatively endcapped with 1,1-diphenylethylene, leading to 1,1-diphenyl-1-methoxy (DPOMe) or 2,2-diphenylvinyl (DPV) termini, or both. Both the DPOMe- and DPV-terminated PIBs, and the mixtures of both endgroups were quantitatively metalated with K/Na alloy, Cs metal, or Li dispersion in THF at room temperature. The resulting stable macrocarbanion obtained by metalation with K/Na alloy was used to initiate living anionic polymerization of tert-butyl methacrylate (tBMA) yielding …
Kinetic treatment of slow initiation in living carbocationic polymerization and investigation of benzyl halides as initiators for the polymerization …
1998
In contrast to earlier conclusions it is demonstrated that kinetic analysis of incremental monomer addition (IMA) experiments for living carbocationic polymerizations with slow initiation leads only to the ratio of apparent rate constants of initiation and propagation. The apparent rate constants depend on the true (bimolecular) rate constants and on the positions of the equilibria between dormant and active states of initiator and polymer chain ends, respectively. The same considerations are true for other living processes involving dormant species, e.g., group transfer polymerization or controlled radical polymerization. Slow initiation of living carbocationic polymerization of isobutylen…
Synthesis of linear and three-arm star tert-chlorine-telechelic polyisobutylenes by a two-step conventional laboratory process
1997
A two-step conventional laboratory process was developed for the synthesis of mono- and difunctional linear and three-arm star tert-chlorine-telechelic polyisobutylenes (PIB) with desired molecular weights (MW) and narrow molecular weight distribution (MWD) by living carbocationic polymerization (LCCP). This polymerization method applies easy to handle operations and chemicals. LCCP of isobutylene (IB), was carried out in CH2Cl2 as solvent and with BCl3 as coinitiator in the first step to obtain soluble low MW PIB prepolymer with narrow MWD. This was followed by addition of hexane, TiCl4 and additional monomer in the second step to prepare PIBs with desired MW and narrow MWD in practically …
Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®)
2015
Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to…
Endfunctional Polymers by Functionalization of Living Cationic Chain Ends with 1,1-Diphenylethylene
1995
Abstract A new functionalization method has been developed for the synthesis of 2,2-diphenylvinyl(DPV)-telechelic polyisobutylene (PIB). First, living carbocationic polymerization (LCCP) of isobutylene (IB) is quantitatively end-quenched with a nonpolymerizable olefin, 1,1-diphenylethylene (DPE). This process yields a mixture of diphenyl substituted vinyl and tertiary chlorine endgroups. Treatment of the resulting polymer with potassium-tert-butoxide (tBuOK) leads to the quantitative formation of DPV-telechelic PIB which is a potential macroinitiator precursor for living anionic polymerizations.