Search results for "Iterated conditional"
showing 5 items of 15 documents
Logical Operations among Conditional Events: theoretical aspects and applications
2019
We generalize the notions of conjunction and disjunction of two conditional events to the case of $n$ conditional events. These notions are defined, in the setting of coherence, by means of suitable conditional random quantities with values in the interval $[0,1]$. We also define the notion of negation, by verifying De Morgan's Laws. Then, we give some results on coherence of prevision assessments for some families of compounded conditionals and we show that some well known properties which are satisfied by conjunctions and disjunctions of unconditional events are also satisfied by conjunctions and disjunction of conditional events. We also examine in detail the coherence of the prevision a…
On compound and iterated conditionals
2021
We illustrate the notions of compound and iterated conditionals introduced, in recent papers, as suitable conditional random quantities, in the framework of coherence. We motivate our definitions by examining some concrete examples. Our logical operations among conditional events satisfy the basic probabilistic properties valid for unconditional events. We show that some, intuitively acceptable, compound sentences on conditionals can be analyzed in a rigorous way in terms of suitable iterated conditionals. We discuss the Import-Export principle, which is not valid in our approach, by also examining the inference from a material conditional to the associated conditional event. Then, we illus…
Interpreting Connexive Principles in Coherence-Based Probability Logic
2021
We present probabilistic approaches to check the validity of selected connexive principles within the setting of coherence. Connexive logics emerged from the intuition that conditionals of the form If \(\mathord {\thicksim }A\), then A, should not hold, since the conditional’s antecedent \(\mathord {\thicksim }A\) contradicts its consequent A. Our approach covers this intuition by observing that for an event A the only coherent probability assessment on the conditional event \(A|\bar{A}\) is \(p(A|\bar{A})=0\). Moreover, connexive logics aim to capture the intuition that conditionals should express some “connection” between the antecedent and the consequent or, in terms of inferences, valid…
Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers
2018
We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…
Conjunction, Disjunction and Iterated Conditioning of Conditional Events
2013
Starting from a recent paper by S. Kaufmann, we introduce a notion of conjunction of two conditional events and then we analyze it in the setting of coherence. We give a representation of the conjoined conditional and we show that this new object is a conditional random quantity, whose set of possible values normally contains the probabilities assessed for the two conditional events. We examine some cases of logical dependencies, where the conjunction is a conditional event; moreover, we give the lower and upper bounds on the conjunction. We also examine an apparent paradox concerning stochastic independence which can actually be explained in terms of uncorrelation. We briefly introduce the…