Search results for "JNK."

showing 10 items of 53 documents

pRb suppresses camptothecin-induced apoptosis in human osteosarcoma Saos-2 cells by inhibiting c-Jun N-terminal kinase

2001

AbstractThis paper studies the cytotoxic effect induced by the topoisomerase I inhibitor camptothecin in human osteosarcoma Saos-2 cells, which lack p53 and contain a non-functional form of the product of the retinoblastoma gene, pRb. Cytotoxicity induced by camptothecin was dose- and time-dependent; the treatment with 100 nM camptothecin reduced cell viability by 50% at 32 h and by 75% at 72 h of exposure. The cytotoxic effect was caused by apoptosis, as ascertained by morphological evidence, acridine orange-ethidium bromide staining and flow cytometric analysis. Apoptosis was accompanied by both the activation of caspase-3 and the fragmentation of poly(ADP-ribose) polymerase. Treatment wi…

Time FactorsCell SurvivalProto-Oncogene Proteins c-junBlotting WesternBiophysicsApoptosisBiologyTransfectionRetinoblastoma ProteinBiochemistryStructural BiologyTumor Cells CulturedpRb JNK topoisomerase I inhibitors osteosarcomaGeneticsmedicineHumansCytotoxic T cellViability assayPhosphorylationFragmentation (cell biology)neoplasmsMolecular BiologySaos-2 cellsc-Jun N-terminal kinaseCell SizeDose-Response Relationship DrugCaspase 3Cell growthCell Cyclec-junJNK Mitogen-Activated Protein KinasesHydrogen PeroxideCell BiologyFlow CytometryGlutathioneMolecular biologyEnzyme ActivationOxidative StresspRbDNA Topoisomerases Type IApoptosisCaspasesCamptothecinMitogen-Activated Protein KinasesPoly(ADP-ribose) PolymerasesTopoisomerase I InhibitorsCamptothecinmedicine.drugFEBS Letters
researchProduct

JNK ‐dependent gene regulatory circuitry governs mesenchymal fate

2015

The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell-cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics of JNK signaling, its role in genomewide transcriptional reprogramming, and involved downstream effectors during EMT remain largely unknown. Here, we show that JNK is not required for initiation, but progression of phenotypic changes associated with EMT. Such dependency resulted from JNK-driven transcriptional reprogramming of critical EMT genes and involved changes in their chromatin state. Furthermore, we identified eight no…

MAP Kinase Kinase 4MAP Kinase Signaling SystemCellular differentiationGene regulatory networkBiologyTime-Lapse ImagingGeneral Biochemistry Genetics and Molecular BiologyCell LineMesodermTranscriptometranscription factorsmetastasisHumansGene Regulatory NetworksEpithelial–mesenchymal transitionMolecular BiologyTranscription factorJNK signalingGeneticsRegulation of gene expressionGeneral Immunology and MicrobiologyGene Expression ProfilingGeneral NeuroscienceCell CycleEMTCell DifferentiationArticles3. Good healthChromatinCell biologyembryonic structuresgene regulationReprogrammingThe EMBO Journal
researchProduct

Protein Kinase C μ Is Regulated by the Multifunctional Chaperon Protein p32

2000

We identified the multifunctional chaperon protein p32 as a protein kinase C (PKC)-binding protein interacting with PKCalpha, PKCzeta, PKCdelta, and PKC mu. We have analyzed the interaction of PKC mu with p32 in detail, and we show here in vivo association of PKC mu, as revealed from yeast two-hybrid analysis, precipitation assays using glutathione S-transferase fusion proteins, and reciprocal coimmunoprecipitation. In SKW 6.4 cells, PKC mu is constitutively associated with p32 at mitochondrial membranes, evident from colocalization with cytochrome c. p32 interacts with PKC mu in a compartment-specific manner, as it can be coimmunoprecipitated mainly from the particulate and not from the so…

ImmunoprecipitationRecombinant Fusion ProteinsGolgi ApparatusSaccharomyces cerevisiaeSpodopteraMitogen-activated protein kinase kinaseBiologyTransfectionBiochemistryCell LineMitochondrial ProteinsAnimalsHumansCloning MolecularKinase activityMolecular BiologyProtein Kinase CProtein kinase CGlutathione TransferaseB-LymphocytesBinding SitesMembrane GlycoproteinsKinaseAutophosphorylationJNK Mitogen-Activated Protein KinasesCell BiologyFusion proteinMitochondriaReceptors ComplementCell biologybody regionsHyaluronan ReceptorsProtein kinase domainBiochemistryMitogen-Activated Protein KinasesCarrier ProteinsMolecular ChaperonesProtein BindingJournal of Biological Chemistry
researchProduct

The ambivalent action of the anti-cancer agent 5-Fluorouracil on myeloid derived suppressor cells under control of docosahexaenoic acid : Role of NLR…

2018

A limitation to 5-Fluorouracil (5-FU) anti-cancer efficacy relies on the secretion of IL-1β by myeloid-derived suppressor cells (MDSC) according to a previous pre-clinical report. The release of mature IL-1β originates from 5 FU mediated NLRP3 activation with increased caspase-1 activity in MDSC and sustains tumor growth recovery in 5 FU treated mice. Docosahexaenoic acid (DHA) belongs to omega-3 fatty acid family and harbors both anti cancer and anti inflammatory properties which might could improve 5 FU chemotherapy. Here, we demonstrate that DHA inhibits 5 FU induced IL 1β secretion produced by a MDSC cell line (MSC-2). In tumor-bearing mice treated with 5 FU, we showed that a DHA enrich…

Dha5 fluorouracil[SDV.MHEP.PHY] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]5-FluorouracilMdscIL-1 betaJnkIL-1beta
researchProduct

L-selectin regulates human neutrophil transendothelial migration

2021

ABSTRACT The migration of circulating neutrophils towards damaged or infected tissue is absolutely critical to the inflammatory response. L-selectin is a cell adhesion molecule abundantly expressed on circulating neutrophils. For over two decades, neutrophil L-selectin has been assigned the exclusive role of supporting tethering and rolling – the initial stages of the multi-step adhesion cascade. Here, we provide direct evidence for L-selectin contributing to neutrophil transendothelial migration (TEM). We show that L-selectin co-clusters with PECAM-1 – a well-characterised cell adhesion molecule involved in regulating neutrophil TEM. This co-clustering behaviour occurs specifically during …

NeutrophilsPECAM-1p38 mitogen-activated protein kinases137p38 MAPKBiologymedicine.disease_cause03 medical and health sciences0302 clinical medicineCell MovementCell AdhesionmedicineHumansL-Selectin030304 developmental biology0303 health sciencesMutationCell adhesion moleculeTransendothelial and Transepithelial MigrationCell BiologyAdhesion129Cell biologyDiapedesisEctodomainCytoplasmTransmigrationbiology.proteinTumor necrosis factor alphaL-selectinEndothelium VascularJNKResearch Article030215 immunologyJournal of Cell Science
researchProduct

Maturation of Epidermal Langerhans Cells In Vitro Is Accompanied by Downregulation of 4F2 (CD98) as Determined by Differential Display

1998

Following short-term culture, Langerhans cells mature morphologically and functionally into potent immunostimulatory cells. As regulation of gene expression accompanies this maturation process, it is likely that differentially expressed genes are involved in the maturation events. Using the recently described method of differential display, we generated cDNA expression patterns starting with mRNA of murine epidermal Langerhans cells isolated either directly (fLC) or following 3 d cultivation (cLC). Five hundred putative differentially expressed cDNA fragments were recovered from the gel. For a part of the fragments differential expression was confirmed by dot blot and Southern hybridization…

skinLangerhans cellDNA ComplementaryDown-RegulationFusion Regulatory Protein-1GrowthDermatologyBiologyBiochemistryMiceDownregulation and upregulationAntigens CDComplementary DNAmedicineAnimalsRNA MessengerCloning Moleculardifferential gene expressionGeneMolecular BiologySouthern blotRegulation of gene expressionJNK2Differential displayMice Inbred BALB Cepidermal cellsGene Expression Regulation DevelopmentalCell BiologyMolecular biologyMice Inbred C57BLmedicine.anatomical_structureGenesCell cultureLangerhans CellsAntigens SurfaceCarrier ProteinsSequence AnalysisJournal of Investigative Dermatology
researchProduct

Activation of c-Jun N-terminal kinase 1 by UV irradiation is inhibited by wortmannin without affecting c-iun expression.

1999

Activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases is an early response of cells upon exposure to DNA-damaging agents. JNK-mediated phosphorylation of c-Jun is currently understood to stimulate the transactivating potency of AP-1 (e.g., c-Jun/c-Fos; c-Jun/ATF-2), thereby increasing the expression of AP-1 target genes. Here we show that stimulation of JNK1 activity is not a general early response of cells exposed to genotoxic agents. Treatment of NIH 3T3 cells with UV light (UV-C) as well as with methyl methanesulfonate (MMS) caused activation of JNK1 and an increase in c-Jun protein and AP-1 binding activity, whereas antineoplastic drugs such as mafosfamide, mito…

Alkylating AgentsProto-Oncogene Proteins c-junUltraviolet RaysStimulationBiologyenvironment and public healthWortmanninTransactivationchemistry.chemical_compoundMiceAnimalsPhosphatidylinositolCollagenasesProtein kinase AMolecular BiologyCell Growth and DevelopmentMitogen-Activated Protein Kinase 1Kinasec-junJNK Mitogen-Activated Protein KinasesCell Biology3T3 CellsMethyl MethanesulfonateMolecular biologyAndrostadienesEnzyme ActivationGene Expression Regulation NeoplasticTranscription Factor AP-1chemistryCalcium-Calmodulin-Dependent Protein KinasesPhosphorylationMitogen-Activated Protein KinasesWortmanninMolecular and cellular biology
researchProduct

Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB.

2005

Although genotoxic agents are powerful inducers of stress kinases (SAPK/JNK), the contribution of DNA damage itself to this response is unknown. Therefore, SAPK/JNK activation of cells harboring specific defects in DNA damage-recognition mechanisms was studied. Dual phosphorylation of SAPK/JNK by the genotoxin methyl methanesulfonate (MMS) occurred in two waves. The early response (≤2 h after exposure) was similar in cells knockout for ATM, PARP, p53, and CSB or defective in DNA-PKcscompared with wild-type cells. The late response however (≥4 h), was drastically reduced in DNA-PKcsand Cockayne's syndrome B (CSB)-deficient cells. Similar results were obtained with human cells lacking DNA-PKc…

DNA ReplicationAlkylationDNA RepairDNA damageDNA repairPoly ADP ribose polymeraseDNA-Activated Protein KinaseBiologyModels Biologicalchemistry.chemical_compoundMiceAnimalsHumansPhosphorylationPoly-ADP-Ribose Binding ProteinsMolecular BiologyDNA-PKcsCells CulturedKinaseDNA HelicasesJNK Mitogen-Activated Protein KinasesNuclear ProteinsCell BiologyBase excision repairDNAArticlesMethyl MethanesulfonateMolecular biologyMethyl methanesulfonateDNA-Binding ProteinsEnzyme Activationenzymes and coenzymes (carbohydrates)DNA Repair EnzymeschemistryPhosphorylationProtein Processing Post-TranslationalDNA DamageMutagensSignal TransductionMolecular biology of the cell
researchProduct

Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS.

2005

Phosphorylated p38 mitogen-activated protein kinase (p38MAPK), but not activated c-jun-N-terminal kinase (JNK), increases in the motor neurons of transgenic mice overexpressing ALS-linked SOD1 mutants at different stages of the disease. This effect is associated with a selective increase of phosphorylated MKK3-6, MKK4 and ASK1 and a concomitant upregulation of the TNFalpha receptors (TNFR1 and TNFR2), but not IL1beta and Fas receptors. Activation of both p38 MAPK and JNK occurs in the activated microglial cells of SOD1 mutant mice at the advanced stage of the disease; however, this effect is not accompanied by the concomitant activation of the upstream kinases ASK1 and MKK3,4,6, while both …

p38 mitogen-activated protein kinasesMAP Kinase Kinase 3Mice TransgenicMAP Kinase Kinase 6BiologyMAP Kinase Kinase Kinase 5p38 Mitogen-Activated Protein KinasesReceptors Tumor Necrosis FactorCellular and Molecular NeuroscienceMiceSuperoxide Dismutase-1Downregulation and upregulationAnimalsHumansASK1RNA Messengerfas ReceptorPhosphorylationReceptorProtein kinase AMolecular BiologyP38MAPK cascadeMotor NeuronsKinaseSuperoxide DismutaseTumor Necrosis Factor-alphaAmyotrophic Lateral SclerosisJNK Mitogen-Activated Protein KinasesReceptors Interleukin-1Cell BiologyCell biologyEnzyme ActivationMice Inbred C57BLDisease Models AnimalTumor Necrosis Factor Decoy ReceptorsSpinal CordReceptors Tumor Necrosis Factor Type IDisease ProgressionTumor necrosis factor alphaSignal TransductionMolecular and cellular neurosciences
researchProduct

eIF2α confers cellular tolerance to S. aureus α-toxin

2015

We report on the role of conserved stress-response pathways for cellular tolerance to a pore forming toxin. First, we observed that small molecular weight inhibitors including of eIF2α-phosphatase, jun-N-terminal kinase (JNK), and PI3-kinase sensitized normal mouse embryonal fibroblasts (MEFs) to the small pore forming S. aureus α-toxin. Sensitization depended on expression of mADAM10, the murine ortholog of a proposed high-affinity receptor for α-toxin in human cells. Similarly, eIF2α (S51A/S51A) MEFs, which harbor an Ala knock-in mutation at the regulated Ser51 phosphorylation site of eukaryotic translation initiation factor 2α, were hyper-sensitive to α-toxin. Inhibition of translation w…

lcsh:Immunologic diseases. AllergyMAPK/ERK pathwayImmunologyeIF2αBiologyCycloheximide03 medical and health scienceschemistry.chemical_compoundCellular toleranceImmunology and AllergyInitiation factorpore forming toxinsReceptorOriginal Research030304 developmental biologyGenetics0303 health sciencesKinase030302 biochemistry & molecular biologyJNK Mitogen-Activated Protein KinasesADAM10Translation (biology)MAPKCell biologyEIF2AK4chemistryPhosphorylationCytolysinS. aureus α-toxinlcsh:RC581-607Frontiers in Immunology
researchProduct