Search results for "Jasmonate"

showing 10 items of 20 documents

Influence of packaging on the aroma stability of strawberry syrup during shelf life

2001

Different types of packaging (glass bottle, PVC, and PET) were compared for the preservation of aroma quality of a strawberry syrup during shelf life. Esters, alcohols, and aldehydes were analyzed by solid-phase micro-extraction (SPME) and solvent extraction. During storage, hydrolysis of esters in acids and alcohols led to a modification of the aroma profile which can be explained by the replacement of “fruity” and “fresh” notes by “dairy note” in the syrup. Aroma compounds that are responsible for fruity notes, such as methyl cinnamate, methyl anthranilate, and methyl dihydrojasmonate, were strongly reduced after 90 days. This could be explained by a selective interaction of these compoun…

Chromatography GasTime Factorsbusiness.product_categoryFood HandlingOrganolepticShelf life01 natural scienceschemistry.chemical_compound0404 agricultural biotechnologyFood Preservation[SDV.IDA]Life Sciences [q-bio]/Food engineeringBottleFood scienceAromaComputingMilieux_MISCELLANEOUSAldehydesMethyl cinnamatebiologyChemistryMethyl anthranilate010401 analytical chemistryFood Packagingfood and beveragesEsters04 agricultural and veterinary sciencesGeneral Chemistry[SDV.IDA] Life Sciences [q-bio]/Food engineeringbiology.organism_classificationFragaria040401 food science0104 chemical sciencesSmellMethyl dihydrojasmonateAlcoholsFruitGeneral Agricultural and Biological Sciencesbusiness
researchProduct

Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus Olivier attacks

2015

Red Palm Weevil (RPW, Rhynchophorus ferrugineus Olivier) threatens most palm species worldwide. Until now, no studies have analyzed the gene regulatory networks of Phoenix canariensis (Chabaud) in response to RPW attacks. The aim of this study was to fill this knowledge gap. Providing this basic knowledge is very important to improve its management.Results: A deep transcriptome analysis was performed on fully expanded leaves of healthy non-infested trees and attacked trees at two symptom stages (middle and late infestation). A total of 54 genes were significantly regulated during middle stage. Pathway enrichment analysis showed that phenylpropanoid-related pathways were induced at this stag…

Genes; Palm; Phoenix canariensis; Red palm weevil; Rhynchophorus ferrugineus; RNA-seq; Plant ScienceRNA-SeqPlant Sciencelcsh:Plant cultureGeneRhynchophorus ferrugineuRhynchophorus ferrugineusTranscriptomechemistry.chemical_compoundAuxinBotanyPhoenix canariensislcsh:SB1-1110Red Palm WeevilJasmonategenesGeneOriginal Researchchemistry.chemical_classificationFatty acid metabolismbiologygenespalm Phoenixcanariensis RedPalmWeevil Rhynchophorusferrugineus RNA-seqbiology.organism_classificationRhynchophoruschemistryPhoenix canariensisRNA-seqPhoenix canariensipalmFrontiers in Plant Science
researchProduct

Analysis of the Transcriptome of the Red Seaweed Grateloupia imbricata with Emphasis on Reproductive Potential

2018

Grateloupia imbricata is an intertidal marine seaweed and candidate model organism for both industry and academic research, owing to its ability to produce raw materials such as carrageenan. Here we report on the transcriptome of G. imbricata with the aim of providing new insights into the metabolic pathways and other functional pathways related to the reproduction of Grateloupia species. Next-generation sequencing was carried out with subsequent de novo assembly and annotation using state-of-the-art bioinformatic protocols. The results show the presence of transcripts required for the uptake of glycerol, which is a specific carbon source for in vitro culture of G. imbricata and nucleotide …

0301 basic medicineved/biology.organism_classification_rank.speciescarbon sourcesPharmaceutical ScienceRed algaetranscriptome shotgun assemblyreproductionTranscriptome03 medical and health scienceschemistry.chemical_compoundBiosynthesisgrowth regulatorsDrug DiscoveryModel organismlcsh:QH301-705.5Pharmacology Toxicology and Pharmaceutics (miscellaneous)red algaeMethyl jasmonatebiologyved/biologybiology.organism_classificationSporeMetabolic pathway030104 developmental biologylcsh:Biology (General)chemistryBiochemistryPolyamineMarine Drugs
researchProduct

Hexanoic acid is a resistance inducer that protects tomato plants againstPseudomonas syringaeby priming the jasmonic acid and salicylic acid pathways

2012

Summary Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule mig…

Hexanoic acidMethyl jasmonateEffectorJasmonic acidfungifood and beveragesSoil ScienceCoronatinePlant ScienceBiologychemistry.chemical_compoundchemistryBiochemistryPseudomonas syringaeAgronomy and Crop ScienceMolecular BiologySalicylic acidSystemic acquired resistanceMolecular Plant Pathology
researchProduct

Detection of an O-methyltransferase synthesising acetosyringone in methyl jasmonate-treated tobacco cell-suspensions cultures.

2013

Acetosyringone (3',5'-dimethoxy-4'-hydroxyacetophenone) is a well-known and very effective inducer of the virulence genes of Agrobacterium tumefaciens but the precise pathway of its biosynthesis in plants is still unknown. We have used two tobacco cell lines, cultured in suspension and exhibiting different patterns of accumulation of acetosyringone in their culture medium upon treatment with methyl jasmonate, to study different steps of acetosyringone biosynthesis. In the two cell lines studied, treatment with 100 mu M methyl jasmonate triggered a rapid and transient increase in acetovanillone synthase activity followed by a progressive increase in S-adenosyl-L-methionine: 5-hydroxyacetovan…

AcetosyringoneAcetosyringone5-Hydroxyacetovanillone[SDV]Life Sciences [q-bio]Nicotiana tabacumPlant ScienceCyclopentanesHorticultureAcetatesBiochemistryHydroxylationchemistry.chemical_compoundStructure-Activity RelationshipBiosynthesisSuspensionsTobacco[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyOxylipinsMolecular BiologyCells CulturedJasmonic acidMethyl jasmonatebiologyDose-Response Relationship DrugMolecular StructureJasmonic acidAcetophenonesGeneral MedicineAgrobacterium tumefaciensMethyltransferasesbiology.organism_classificationO-methyltransferasechemistryBiochemistry[SDE]Environmental Sciencesbiology.proteinPhytochemistry
researchProduct

Specific adduction of plant lipid transfer protein by an allene oxide generated by 9-lipoxygenase and allene oxide synthase

2006

International audience; Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the {alpha}-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid. Further studies on the formation of LTP1b demonstrated that the ligand was introduced by nucleophilic attack of the free carboxylate group of the Asp-7 residu…

Models Molecular0106 biological sciencesMagnetic Resonance SpectroscopyTime FactorsLIPID TRANSFER PROTEINAlleneLipoxygenaseLigands01 natural sciencesBiochemistrySubstrate SpecificityMiceLipoxygenasechemistry.chemical_compoundJasmonate2. Zero hungerchemistry.chemical_classificationALLENE OXIDE SYNTHASEMice Inbred BALB C0303 health sciencesbiologyfood and beveragesLIPID TRANSFER PROTEIN;LTP;ALLENE OXIDE SYNTHASE;PROTEINE DE TRANSFERT DE LIPIDE;REPONSE DE LA PLANTEIntramolecular OxidoreductasessynthaseBiochemistryprotéineLTPPlant lipid transfer proteinsLinoleic acidGas Chromatography-Mass Spectrometry03 medical and health sciencesprotéine végétaleréaction de défenseBiosynthesisAnimals[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Molecular Biologymécanisme de défense030304 developmental biologyHybridomasFatty acidHordeumCell BiologyOxylipinenzymeoxylipineModels Chemicalchemistrybiology.proteinREPONSE DE LA PLANTEPROTEINE DE TRANSFERT DE LIPIDECarrier Proteins010606 plant biology & botany
researchProduct

An ancestral allele of grapevine transcription factor MYB14 promotes plant defence

2016

Highlight The molecular mechanisms underlying the elevated inducibility of stilbene in pathogen-resistant Vitis sylvestris can be explained by the increased inducibility of the MYB14 promoter.

0106 biological sciences0301 basic medicinestilbene synthaseGenotypePhysiologyMYB14Ultraviolet Raysflg22Plant ScienceResveratrol01 natural sciencesModels Biological03 medical and health scienceschemistry.chemical_compoundPlasmopara viticolaOnium CompoundsGenotypePlant ImmunityVitisJasmonateAllelePromoter Regions GeneticTranscription factorAllelesPlant Proteinschemistry.chemical_classificationGeneticsUV.biologyPhytoalexinfungifood and beveragesbiology.organism_classificationgrapevine (V. sylvestris)030104 developmental biologychemistryOomycetesPlasmopara viticolaSalicylic acid010606 plant biology & botanyResearch PaperTranscription FactorsJournal of Experimental Botany
researchProduct

The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

2016

Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenol…

0106 biological sciences0301 basic medicineEthylenePhysiologyMetabolitePlant Sciencephenolic compoundsBiology01 natural sciencesCinnamic acid03 medical and health scienceschemistry.chemical_compoundMetabolomicsmethy jasmonatePhysiology (medical)ethyleneOriginal ResearchMethyl jasmonateCatharanthus roseusJasmonic acidCatharanthus roseusbiology.organism_classification030104 developmental biologychemistryBiochemistrynon-targeted metabolomicsSalicylic acid010606 plant biology & botanyFrontiers in Physiology
researchProduct

Arginase induction represses gall development during clubroot infection in Arabidopsis.

2012

Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. C…

0106 biological sciencesClubrootArabidopsis thalianaPhysiologyPyridinesArabidopsisplantPlant SciencePlasmodiophorida01 natural sciencesPlant RootsCallogenesisPlant Epidermischemistry.chemical_compoundJasmonateArabidopsisPlant TumorsGallArabidopsis thalianaJasmonateAmino AcidsComputingMilieux_MISCELLANEOUSchemistry.chemical_classification0303 health sciencesJasmonic acidfood and beveragesGeneral MedicineCell biologyArginasePLANT SCIENCESOrgan SpecificityPlasmodiophora brassicaeEnzyme Inductionnitric-oxideCyclopentanesBiologyHydroxylationAmidohydrolasesClubroot03 medical and health sciencesAuxinBotanymedicinethalianaOxylipinsIsoleucine030304 developmental biologydiseaseArginaseArabidopsis Proteinsfungijasmonic acid[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyplasmodiophora-brassicaeCell BiologyDiazonium Compoundsbiology.organism_classificationmedicine.diseaserootarginine catabolism[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breedingchemistryMutationidentificationaccumulation010606 plant biology & botanyPlantcell physiology
researchProduct

Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins.

2012

We analyze, for the first time, the early signal transduction pathways triggered by methyl jasmonate (MJ) and cyclodextrins (CDs) in tobacco (Nicotiana tabacum) cell cultures, paying particular attention to changes in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), the production of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO), and late events like the induction of capsidiol. Our data indicate that MJ and CDs trigger a [Ca(2+)](cyt) rise promoted by Ca(2+) influx through Ca(2+)-permeable channels. The joint presence of MJ and CDs provokes a first increase in [Ca(2+)](cyt) similar to that observed in MJ-treated cells, followed by a second peak similar to that found in the presence…

PhysiologyNicotiana tabacum[SDV]Life Sciences [q-bio]nicotiana tabacumPlant ScienceCyclopentanesAcetatesNitric OxideCapsidiolchemistry.chemical_compoundCytosolOnium CompoundsPlant CellsTobaccoGeneticsProtein phosphorylationOxylipinsPhosphorylationCells CulturedRespiratory BurstCyclodextrinsMethyl jasmonatebiologyMolecular StructureHydrogen Peroxidemethyl jasmonatebiology.organism_classificationcell culturesRespiratory burstCulture MediaCytosolEGTABiochemistrychemistry[SDE]Environmental SciencesBiophysicsPhosphorylationCalciumSesquiterpenesSignal TransductionPlant physiology and biochemistry : PPB
researchProduct