Search results for "K-Means"
showing 10 items of 43 documents
Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain)
2021
Forest fires are undesirable situations with tremendous impacts on wildlife and people&rsquo
Privacy preserving data collection for smart grid using self-organizing map
2017
Homomorphic encryption is widely researched in the smart grid area to publish and transfer electricity consumption data between electricity companies. This method makes it feasible to calculate total electricity consumption of neighborhoods without sharing any raw electricity consumption data. In the area of demand response(DR), calculating the total consumption of electricity is important in order to create DR reports which are published by third party to reduce the peak period of electricity usage such as 7 am or 6pm. Nevertheless, the possibility of data exposing or data decryption may lead to individual households private information revealing, for example, the timing of leaving home, t…
Dimensionality Reduction Techniques: An Operational Comparison On Multispectral Satellite Images Using Unsupervised Clustering
2006
Multispectral satellite imagery provides us with useful but redundant datasets. Using Dimensionality Reduction (DR) algorithms, these datasets can be made easier to explore and to use. We present in this study an objective comparison of five DR methods, by evaluating their capacity to provide a usable input to the K-means clustering algorithm. We also suggest a method to automatically find a suitable number of classes K, using objective "cluster validity indexes" over a range of values for K. Ten Landsat images have been processed, yielding a classification rate in the 70-80% range. Our results also show that classical linear methods, though slightly outperformed by more recent nonlinear al…
Forms and Functions of the Real Estate Market of Palermo (Italy). Science and Knowledge in the Cluster Analysis Approach
2016
The analysis of the housing market of a city requires suitable approaches and tools, such as data mining models, to represent its complexity which derives on many elements, e.g. the type of capital asset-house is a common good and an investment good as well, the heterogeneity of the urban areas—each of them has own historical and representative values and different urban functions—and the variability of building quality. The housing market of the most densely populated area of Palermo (Italy), corresponding to ten districts, is analyzed to verify the degree of its inner homogeneity and the relations between the quality of the characteristics and the price of the properties. Five hundred set…
Fast PET Scan Tumor Segmentation Using Superpixels, Principal Component Analysis and K-Means Clustering
2018
Positron Emission Tomography scan images are extensively used in radiotherapy planning, clinical diagnosis, assessment of growth and treatment of a tumor. These all rely on fidelity and speed of detection and delineation algorithm. Despite intensive research, segmentation remained a challenging problem due to the diverse image content, resolution, shape, and noise. This paper presents a fast positron emission tomography tumor segmentation method in which superpixels are extracted first from the input image. Principal component analysis is then applied on the superpixels and also on their average. Distance vector of each superpixel from the average is computed in principal components coordin…
Exploratory approach for network behavior clustering in LoRaWAN
2021
AbstractThe interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to device and human interactions are stored in databases, as well as I…
Regional frequency analysis of extreme rainfall in Sicily (Italy)
2018
Extreme rainfall events have large impacts on society and are likely to increase in intensity under climate change. For design and management decisions, particularly regarding hydraulic works, accurate estimates of precipitation magnitudes are needed at different durations. In this article, an objective approach of the regional frequency analysis (RFA) has been applied to precipitation data for the island of Sicily, Italy. Annual maximum series for rainfall with durations of 1, 3, 6, 12, and 24 h from about 130 rain gauges were used. The RFA has been implemented using principal component analysis (PCA) followed by a clustering analysis, through the k-means algorithm, to identify statistical…
Mid-sagittal plane detection for advanced physiological measurements in brain scans
2019
Objective The process of diagnosing many neurodegenerative diseases, such as Parkinson's and progressive supranuclear palsy, involves the study of brain magnetic resonance imaging (MRI) scans in order to identify and locate morphological markers that can highlight the health status of the subject. A fundamental step in the pre-processing and analysis of MRI scans is the identification of the mid-sagittal plane, which corresponds to the mid-brain and allows a coordinate reference system for the whole MRI scan set. Approach To improve the identification of the mid-sagittal plane we have developed an algorithm in Matlab® based on the k-means clustering function. The results have been compared …
Optimization of spodumene identification by statistical approach for laser-induced breakdown spectroscopy data of lithium pegmatite ores
2021
Mapping with laser-induced breakdown spectroscopy (LIBS) can offer more than just the spatial distribution of elements: the rich spectral information also enables mineral recognition. In the present study, statistical approaches were used for the recognition of the spodumene from lithium pegmatite ores. A broad spectral range (280–820 nm) with multiple lines was first used to establish the methods based on vertex component analysis (VCA) and K-means and DBSCAN clusterings. However, with a view to potential on-site applications, the dimensions of the datasets must be reduced in order to accomplish fast analysis. Therefore, the capability of the methods in mineral identification was tested wi…
District metered area design through multicriteria and multiobjective optimization
2022
[EN] The design of district metered areas (DMA) in potable water supply systems is of paramount importance for water utilities to properly manage their systems. Concomitant to their main objective, namely, to deliver quality water to consumers, the benefits include leakage reduction and prompt reaction in cases of natural or malicious contamination events. Given the structure of a water distribution network (WDN), graph theory is the basis for DMA design, and clustering algorithms can be applied to perform the partitioning. However, such sectorization entails a number of network modifications (installing cut-off valves and metering and control devices) involving costs and operation changes,…