Search results for "KINASE"

showing 10 items of 2635 documents

Nitric oxide signalling in plants: interplays with Ca2+ and protein kinase

2008

International audience; Much attention has been paid to nitric oxide (NO)research since its discovery as a physiological mediator of plant defence responses. In recent years, newer roles have been attributed to NO, ranging from root development to stomatal closure. The molecular mechanisms underlying NO action in plants are just begun to emerge. The currently available data illustrate that NO can directly influence the activity of target proteins through nitrosylation and has the capacity to act as a Ca2+-mobilizing intracellular messenger. The interplay between NO and Ca2+ has important functional implications, expanding and enriching the possibilities for modulating transduction processes…

0106 biological sciencesSIGNALLINGPhysiologyPlant ScienceBiology01 natural sciencesNitric oxide03 medical and health sciencesTransduction (genetics)chemistry.chemical_compoundSNF-RELATED PROTEIN KINASE 2Mediator030304 developmental biology0303 health sciencesADP-RIBOSE CYCLIQUEPROTEIN KINASESKinaseCALCIUM 2+NitrosylationPlants[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/BotanicsNitric oxide metabolismCell biologySignallingBiochemistrychemistryCalciumIntracellularNITRIC OXIDE010606 plant biology & botanySignal Transduction
researchProduct

Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway

2004

Ergosterol, a typical fungal sterol, induced in tobacco (Nicotiana tabacum L. cv. Xanthi) suspension cells the synthesis of reactive oxygen species and alkalization of the external medium that are dependent on the mobilization of calcium from internal stores. We used specific inhibitors to elucidate the signal pathway triggered by ergosterol compared with cryptogein, a proteinaceous elicitor of Phytophthora cryptogea. HerbimycinA and genistein, inhibitors of tyrosine protein kinases, had no effect on the oxidative burst and pH changes induced by bothelicitors.Similarly,H-89,aninhibitorofproteinkinaseA,hadnoeffectontheinductionofthesedefensereactions.However,theresponse to both elicitors was…

0106 biological sciencesTime FactorsCell SurvivalPhysiologyPlant Science01 natural sciencesPhospholipases AFungal Proteins03 medical and health scienceschemistry.chemical_compoundPhospholipase A2ErgosterolPROTEINE KINASE CTobacco[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biologypolycyclic compoundsGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyEnzyme InhibitorsEstrenesProtein kinase ACells CulturedProtein Kinase CProtein kinase CComputingMilieux_MISCELLANEOUS030304 developmental biologySulfonamides0303 health sciencesErgosterolbiologyPhospholipase CAlgal ProteinsNeomycinIsoquinolinesPyrrolidinonesSterolElicitorRespiratory burstOxidative StressPhospholipases A2chemistryBiochemistryType C Phospholipasesbiology.proteinlipids (amino acids peptides and proteins)Signal Transduction010606 plant biology & botany
researchProduct

Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells

2011

International audience; The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca2þ]cyt which intensity dep…

0106 biological sciencesTime FactorsPhysiologyNicotiana tabacumPlant SciencesterolsSecond Messenger Systemstobacco01 natural scienceschemistry.chemical_compoundCytosolpolycyclic compoundsPhosphorylationCalcium signalingreactive oxygen species0303 health sciencesErgosterolelicitorbiologyergosterolHydrogen-Ion ConcentrationPlants Genetically ModifiedRecombinant ProteinsCell biologyBiochemistrySecond messenger systemReactive oxygen species; Calcium signature; Elicitor; Signal transduction; MAPKs; tobaccolipids (amino acids peptides and proteins)Protonssignal transductionCell Survivalnicotiana plumbaginifoliachemistry.chemical_elementnicotiana tabacumoxydantCalciumcalcium signature03 medical and health sciencesAequorinMAPKsBAPTAGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium Signaling030304 developmental biologyMitogen-Activated Protein Kinase KinasesCalcium metabolismHydrogen Peroxidebiochemical phenomena metabolism and nutritionbiology.organism_classificationCytosolchemistryCalciumApoproteins010606 plant biology & botany
researchProduct

Nitric Oxide Signalling in Plants: Cross-Talk With Ca2+, Protein Kinases and Reactive Oxygen Species

2010

International audience; Nitric oxide (NO) is a gaseous free radical recognized as a ubiquitous signal transducer that contributes to various biological processes in animals. It exerts most of its effects by regulating the activities of various proteins including Ca2+ channels, protein kinases and transcription factors. In plants, studies conducted over the past ten years revealed that NO also functions as an endogenous mediator in diverse physiological processes ranging from root development to stomatal closure. Its biological role as an intracellular plant messenger molecule, however, remains poorly understood. Here, we review the molecular basis of NO signaling in animals and discuss curr…

0106 biological scienceschemistry.chemical_classification[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology0303 health sciencesProgrammed cell deathReactive oxygen speciesKinaseEndogenous mediator01 natural sciencesNitric oxideCell biology03 medical and health scienceschemistry.chemical_compoundchemistry[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySignal transductionTranscription factorIntracellular030304 developmental biology010606 plant biology & botany
researchProduct

Early signaling events induced by elicitors of plant defenses

2006

International audience; Plant pathogen attacks are perceived through pathogenissued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific eli…

0106 biological sciencesprotéine kinasePhysiologyNicotiana tabacum[SDV]Life Sciences [q-bio]Biology01 natural sciences03 medical and health sciencesPlant defense against herbivoryProtein kinase A030304 developmental biologyPlant DiseasesPlant Proteinsplant defense responsesprotein kinases0303 health sciencesplant defense responses; ion fluxes; protein kinasesfungifood and beveragesprotein kinaseGeneral Medicineion fluxes;protein kinasePlantsbiology.organism_classificationElicitorCytosolMembrane proteinBiochemistryPhosphorylationionSignal transductionAgronomy and Crop Scienceion fluxes010606 plant biology & botanySignal Transduction
researchProduct

2018

Physical fitness is crucial to warfighters' performance in the battlefield. Previous studies have shown negative changes in their hormonal and neuromuscular responses induced by military field training (MFT). The purpose of this study was to investigate the changes in hormonal and immunological values and body composition during a prolonged MFT and to find out how warfighters' physical condition influences these changes. Conscripts (n = 49, age 20 ± 1 years, height 179 ± 9 cm, body mass 73.8 ± 7.8 kg, fat 12.6 ± 3.7% and BMI 23 kg/m²) were measured before, during, after MFT, and after a 4-day recovery period. Serum insulin-like growth factor-1 (IGF-1), tumor necrosis factor alpha (TNF-α), i…

021110 strategic defence & security studiesmedicine.medical_specialtybiologyPhysiologybusiness.industryLeptinPhysical fitness0211 other engineering and technologies030229 sport sciences02 engineering and technologyIsometric exercisePhysical strengthField trainingTrunk03 medical and health sciences0302 clinical medicineEndocrinologyPhysiology (medical)Internal medicinemedicinebiology.proteinCreatine kinasebusinessHormonePhysiological Reports
researchProduct

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

2016

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

0301 basic medicine030102 biochemistry & molecular biologybiologyEndosomemedia_common.quotation_subjectImmunologyMicrobiologyClathrinCell biology03 medical and health sciences030104 developmental biologyDownregulation and upregulationEpidermal growth factorVirologybiology.proteinEpidermal growth factor receptorInternalizationA431 cellsProtein kinase Cmedia_commonCellular Microbiology
researchProduct

Cellular Concentrations of the Transporters DctA and DcuB and the Sensor DcuS of Escherichia coli and the Contributions of Free and Complexed DcuS to…

2017

ABSTRACT In Escherichia coli , the catabolism of C 4 -dicarboxylates is regulated by the DcuS-DcuR two-component system. The functional state of the sensor kinase DcuS is controlled by C 4 -dicarboxylates (like fumarate) and complexation with the C 4 -dicarboxylate transporters DctA and DcuB, respectively. Free DcuS (DcuS F ) is known to be constantly active even in the absence of fumarate, whereas the DcuB-DcuS and DctA-DcuS complexes require fumarate for activation. To elucidate the impact of the transporters on the functional state of DcuS and the concentrations of DcuS F and DcuB-DcuS (or DctA-DcuS), the absolute levels of DcuS, DcuB, and DctA were determined in aerobically or anaerobic…

0301 basic medicine030106 microbiologyBiologymedicine.disease_causeMicrobiologyDNA-binding proteinMass Spectrometry03 medical and health sciencesFumaratesTranscriptional regulationmedicineEscherichia coliDicarboxylic AcidsAnaerobiosisPhosphorylationMolecular BiologyTranscription factorEscherichia coliDicarboxylic Acid TransportersCatabolismKinaseEscherichia coli ProteinsAutophosphorylationGene Expression Regulation BacterialAerobiosisDNA-Binding Proteins030104 developmental biologyBiochemistryPhosphorylationProtein KinasesSignal TransductionTranscription FactorsResearch ArticleJournal of bacteriology
researchProduct

AMPA receptor complex constituents: Control of receptor assembly, membrane trafficking and subcellular localization

2018

Fast excitatory transmission at synapses of the central nervous system is mainly mediated by AMPA receptors (AMPARs). Synaptic AMPAR number and function correlates with synaptic strength. AMPARs are thus key proteins of activity-dependent plasticity in neuronal communication. Up- or down-regulation of synaptic AMPAR number is a tightly controlled dynamic process that involves export of receptors from the endoplasmic reticulum (ER) and Golgi apparatus, exocytosis and endocytosis as well as lateral diffusion of the receptors in the cell membrane. The four AMPAR subunits are embedded into a dynamic network of more than 30 interacting proteins. Many of these proteins are known to modulate recep…

0301 basic medicineAMPA receptorBiologyEndocytosisAxonal TransportExocytosis03 medical and health sciencesCellular and Molecular Neurosciencesymbols.namesakeAnimalsHumansReceptors AMPAReceptorMolecular BiologyNeuronsmusculoskeletal neural and ocular physiologyEndoplasmic reticulumCell BiologyGolgi apparatusSubcellular localizationCell biologyTransport proteinProtein Transport030104 developmental biologynervous systemSynapsessymbolsProtein MultimerizationGuanylate KinasesMolecular and Cellular Neuroscience
researchProduct

Effect of Methanolic Extract of Dandelion Roots on Cancer Cell Lines and AMP-Activated Protein Kinase Pathway

2017

Ethnomedicinal knowledge of plant-derived bioactives could help us in discovering new therapeutic compounds of great potential. Certainly, dandelion has been used in traditional ethno-medicinal systems (i.e., Chinese, Arabian, Indian, and Native American) to treat different types of cancer. Though, dandelion is highly vigorous, but the potential mode of action is still unclear. In the current study, the antiproliferative activity of methanolic extracts of dandelion root (MEDr) on cell viability of HepG2, MCF7, HCT116, and normal Hs27 was investigated. It was observed that MEDr (500 μg/mL) drastically decreased the growth of HepG2 cell line, while the effect on MCF7 and HCT116 cell lines was…

0301 basic medicineAMPKDandelionPharmacologytraditional medicine03 medical and health sciencesdandelion0302 clinical medicineAMP-activated protein kinasecancerPharmacology (medical)Viability assayCytotoxicityMode of actionOriginal ResearchPharmacologybiologyChemistrylcsh:RM1-950AMPKlcsh:Therapeutics. Pharmacology030104 developmental biologyCell cultureApoptosis030220 oncology & carcinogenesisbiology.proteincytotoxicityFrontiers in Pharmacology
researchProduct