Search results for "Kernel"

showing 10 items of 357 documents

Design of the CGAL Spherical Kernel and application to arrangements of circles on a sphere

2009

International audience; This paper presents a CGAL kernel for algorithms manipulating 3D spheres, circles, and circular arcs. The paper makes three contributions. First, the mathematics underlying two non trivial predicates are presented. Second, the design of the kernel concept is developed, and the connexion between the mathematics and this design is established. In particular, we show how two different frameworks can be combined: one for the general setting, and one dedicated to the case where all the objects handled lie on a reference sphere. Finally, an assessment about the efficacy of the \sk\ is made through the calculation of the exact arrangement of circles on a sphere. On average …

SpheresCurved objectsCGALGeneric programming[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]Constructions[ INFO.INFO-MS ] Computer Science [cs]/Mathematical Software [cs.MS]Geometric kernels[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG][INFO.INFO-MS] Computer Science [cs]/Mathematical Software [cs.MS][ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]RobustnessPredicates[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS]
researchProduct

Nonlinear Complex PCA for spatio-temporal analysis of global soil moisture

2020

Soil moisture (SM) is a key state variable of the hydrological cycle, needed to monitor the effects of a changing climate on natural resources. Soil moisture is highly variable in space and time, presenting seasonalities, anomalies and long-term trends, but also, and important nonlinear behaviours. Here, we introduce a novel fast and nonlinear complex PCA method to analyze the spatio-temporal patterns of the Earth's surface SM. We use global SM estimates acquired during the period 2010-2017 by ESA's SMOS mission. Our approach unveils both time and space modes, trends and periodicities unlike standard PCA decompositions. Results show the distribution of the total SM variance among its differ…

State variable010504 meteorology & atmospheric sciencesFOS: Physical sciences020206 networking & telecommunications02 engineering and technology15. Life on landAtmospheric sciences01 natural sciencesPhysics::GeophysicsKernel (linear algebra)Nonlinear systemVariable (computer science)Physics - Atmospheric and Oceanic Physics13. Climate actionPrincipal component analysisAtmospheric and Oceanic Physics (physics.ao-ph)0202 electrical engineering electronic engineering information engineeringEnvironmental scienceWater cycleTime seriesWater contentPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

Conditional convex orders and measurable martingale couplings

2014

Strassen's classical martingale coupling theorem states that two real-valued random variables are ordered in the convex (resp.\ increasing convex) stochastic order if and only if they admit a martingale (resp.\ submartingale) coupling. By analyzing topological properties of spaces of probability measures equipped with a Wasserstein metric and applying a measurable selection theorem, we prove a conditional version of this result for real-valued random variables conditioned on a random element taking values in a general measurable space. We also provide an analogue of the conditional martingale coupling theorem in the language of probability kernels and illustrate how this result can be appli…

Statistics and Probability01 natural sciencesStochastic ordering010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityStrassen algorithmWasserstein metricmartingale couplingvektorit (matematiikka)FOS: MathematicsApplied mathematics0101 mathematicsstokastiset prosessitMathematicsProbability measurekytkentäconvex stochastic ordermatematiikka010102 general mathematicsProbability (math.PR)Random elementMarkov chain Monte Carloconditional couplingincreasing convex stochastic orderpointwise couplingsymbols60E15probability kernelMartingale (probability theory)Random variableMathematics - Probability
researchProduct

Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel

2015

To assess the goodness-of-fit of a sample to a continuous random distribution, the most popular approach has been based on measuring, using either L∞ - or L2 -norms, the distance between the null hypothesis cumulative distribution function and the empirical cumulative distribution function. Indeed, as far as I know, almost all the tests currently available in R related to this issue (ks.test in package stats, ad.test in package ADGofTest, and ad.test, ad2.test, ks.test, v.test and w2.test in package truncgof) use one of these two distances on cumulative distribution functions. This paper (i) proposes dgeometric.test, a new implementation of the test that measures the discrepancy between a s…

Statistics and ProbabilityCumulative distribution functionKernel density estimationProbability density functionKolmogorov–Smirnov testEmpirical distribution functionsymbols.namesakeGoodness of fitStatisticssymbolsStatistics Probability and UncertaintyNull hypothesisRandom variablelcsh:Statisticslcsh:HA1-4737SoftwareMathematicsJournal of Statistical Software
researchProduct

Weighted samples, kernel density estimators and convergence

2003

This note extends the standard kernel density estimator to the case of weighted samples in several ways. In the first place I consider the obvious extension by substituting the simple sum in the definition of the estimator by a weighted sum, but I also consider other alternatives of introducing weights, based on adaptive kernel density estimators, and consider the weights as indicators of the informational content of the observations and in this sense as signals of the local density of the data. All these ideas are shown using the Penn World Table in the context of the macroeconomic convergence issue.

Statistics and ProbabilityEconomics and EconometricsMathematical optimizationKernel density estimationEstimatorMultivariate kernel density estimationKernel principal component analysisMathematics (miscellaneous)Penn World TableKernel embedding of distributionsVariable kernel density estimationKernel (statistics)Applied mathematicsSocial Sciences (miscellaneous)MathematicsEmpirical Economics
researchProduct

Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model

2020

International audience; We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain onRd. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidths are selected by a method inspired by the works of Goldenshluger and Lepski [(2011), 'Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality',The Annals of Statistics3: 1608-1632). Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty. Finally, we investigate the performance of the…

Statistics and ProbabilityKernel density estimationadaptive estimationNonparametric kernel estimation01 natural sciences010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]0502 economics and businessbinary treesApplied mathematicsbifurcating autoregressive processes0101 mathematics[MATH]Mathematics [math]050205 econometrics MathematicsBinary treeStationary distributionMarkov chainStochastic processModel selection05 social sciencesEstimator[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Adaptive estimatorStatistics Probability and UncertaintyGoldenshluger-Lepski methodology
researchProduct

Sparse kernel methods for high-dimensional survival data

2008

Abstract Sparse kernel methods like support vector machines (SVM) have been applied with great success to classification and (standard) regression settings. Existing support vector classification and regression techniques however are not suitable for partly censored survival data, which are typically analysed using Cox's proportional hazards model. As the partial likelihood of the proportional hazards model only depends on the covariates through inner products, it can be ‘kernelized’. The kernelized proportional hazards model however yields a solution that is dense, i.e. the solution depends on all observations. One of the key features of an SVM is that it yields a sparse solution, dependin…

Statistics and ProbabilityLung NeoplasmsLymphomaComputer sciencecomputer.software_genreComputing MethodologiesBiochemistryPattern Recognition AutomatedArtificial IntelligenceMargin (machine learning)CovariateCluster AnalysisHumansComputer SimulationFraction (mathematics)Molecular BiologyProportional Hazards ModelsModels StatisticalTraining setProportional hazards modelGene Expression ProfilingComputational BiologyComputer Science ApplicationsSupport vector machineComputational MathematicsKernel methodComputational Theory and MathematicsRegression AnalysisData miningcomputerAlgorithmsSoftwareBioinformatics
researchProduct

Recursive estimation of the conditional geometric median in Hilbert spaces

2012

International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…

Statistics and ProbabilityMallows-Wasserstein distanceRobbins-Monroasymptotic normalityCLTcentral limit theoremAsymptotic distributionMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMallows–Wasserstein distanceonline data010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]60F05FOS: MathematicsApplied mathematics[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematics62L20MathematicsaveragingSequential estimation010102 general mathematicsEstimatorRobbins–MonroConditional probability distribution[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Geometric medianstochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]robust estimatorRate of convergenceConvergence of random variablesStochastic gradient.kernel regressionsequential estimationKernel regressionStatistics Probability and Uncertainty
researchProduct

Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter

2013

Markov chain Monte Carlo (MCMC) methods are powerful computational tools for analysis of complex statistical problems. However, their computational efficiency is highly dependent on the chosen proposal distribution, which is generally difficult to find. One way to solve this problem is to use adaptive MCMC algorithms which automatically tune the statistics of a proposal distribution during the MCMC run. A new adaptive MCMC algorithm, called the variational Bayesian adaptive Metropolis (VBAM) algorithm, is developed. The VBAM algorithm updates the proposal covariance matrix using the variational Bayesian adaptive Kalman filter (VB-AKF). A strong law of large numbers for the VBAM algorithm is…

Statistics and ProbabilityMathematical optimizationCovariance matrixApplied MathematicsBayesian probabilityRejection samplingMathematics - Statistics TheoryMarkov chain Monte CarloStatistics Theory (math.ST)Kalman filterStatistics::ComputationComputational Mathematicssymbols.namesakeComputingMethodologies_PATTERNRECOGNITIONMetropolis–Hastings algorithmComputational Theory and MathematicsConvergence (routing)FOS: MathematicsKernel adaptive filtersymbolsMathematicsComputational Statistics & Data Analysis
researchProduct

Gamma Kernel Intensity Estimation in Temporal Point Processes

2011

In this article, we propose a nonparametric approach for estimating the intensity function of temporal point processes based on kernel estimators. In particular, we use asymmetric kernel estimators characterized by the gamma distribution, in order to describe features of observed point patterns adequately. Some characteristics of these estimators are analyzed and discussed both through simulated results and applications to real data from different seismic catalogs.

Statistics and ProbabilityNonparametric statisticsEstimatorKernel principal component analysisPoint processVariable kernel density estimationKernel embedding of distributionsModeling and SimulationKernel (statistics)Bounded domainStatisticsGamma distributionGamma kernel estimatorIntensity functionTemporal point processes.Settore SECS-S/01 - StatisticaMathematicsCommunications in Statistics - Simulation and Computation
researchProduct