Search results for "Kernel"
showing 10 items of 357 documents
Spectral clustering with the probabilistic cluster kernel
2015
Abstract This letter introduces a probabilistic cluster kernel for data clustering. The proposed kernel is computed with the composition of dot products between the posterior probabilities obtained via GMM clustering. The kernel is directly learned from the data, is parameter-free, and captures the data manifold structure at different scales. The projections in the kernel space induced by this kernel are useful for general feature extraction purposes and are here exploited in spectral clustering with the canonical k-means. The kernel structure, informative content and optimality are studied. Analysis and performance are illustrated in several real datasets.
Fuzzy sigmoid kernel for support vector classifiers
2004
This Letter proposes the use of the fuzzy sigmoid function presented in (IEEE Trans. Neural Networks 14(6) (2003) 1576) as non-positive semi-definite kernel in the support vector machines framework. The fuzzy sigmoid kernel allows lower computational cost, and higher rate of positive eigenvalues of the kernel matrix, which alleviates current limitations of the sigmoid kernel.
Feature extraction from remote sensing data using Kernel Orthonormalized PLS
2007
This paper presents the study of a sparse kernel-based method for non-linear feature extraction in the context of remote sensing classification and regression problems. The so-called kernel orthonormalized PLS algorithm with reduced complexity (rKOPLS) has two core parts: (i) a kernel version of OPLS (called KOPLS), and (ii) a sparse (reduced) approximation for large scale data sets, which ultimately leads to rKOPLS. The method demonstrates good capabilities in terms of expressive power of the extracted features and scalability.
A Support Vector Machine Signal Estimation Framework
2018
Support vector machine (SVM) were originally conceived as efficient methods for pattern recognition and classification, and the SVR was subsequently proposed as the SVM implementation for regression and function approximation. Nowadays, the SVR and other kernel‐based regression methods have become a mature and recognized tool in digital signal processing (DSP). This chapter starts to pave the way to treat all the problems within the field of kernel machines, and presents the fundamentals for a simple, framework for tackling estimation problems in DSP using support vector machine SVM. It outlines the particular models and approximations defined within the framework. The chapter concludes wit…
Machine Learning Methods for Spatial and Temporal Parameter Estimation
2020
Monitoring vegetation with satellite remote sensing is of paramount relevance to understand the status and health of our planet. Accurate and constant monitoring of the biosphere has large societal, economical, and environmental implications, given the increasing demand of biofuels and food by the world population. The current democratization of machine learning, big data, and high processing capabilities allow us to take such endeavor in a decisive manner. This chapter proposes three novel machine learning approaches to exploit spatial, temporal, multi-sensor, and large-scale data characteristics. We show (1) the application of multi-output Gaussian processes for gap-filling time series of…
Semisupervised kernel orthonormalized partial least squares
2012
This paper presents a semisupervised kernel orthonormalized partial least squares (SS-KOPLS) algorithm for non-linear feature extraction. The proposed method finds projections that minimize the least squares regression error in Hilbert spaces and incorporates the wealth of unlabeled information to deal with small size labeled datasets. The method relies on combining a standard RBF kernel using labeled information, and a generative kernel learned by clustering all available data. The positive definiteness of the kernels is proven, and the structure and information content of the derived kernels is studied. The effectiveness of the proposed method is successfully illustrated in standard UCI d…
Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis
2014
This paper presents a novel semisupervised kernel partial least squares (KPLS) algorithm for nonlinear feature extraction to tackle both land-cover classification and biophysical parameter retrieval problems. The proposed method finds projections of the original input data that align with the target variable (labels) and incorporates the wealth of unlabeled information to deal with low-sized or underrepresented data sets. The method relies on combining two kernel functions: the standard radial-basis-function kernel based on labeled information and a generative, i.e., probabilistic, kernel directly learned by clustering the data many times and at different scales across the data manifold. Th…
A family of kernel anomaly change detectors
2014
This paper introduces the nonlinear extension of the anomaly change detection algorithms in [1] based on the theory of reproducing kernels. The presented methods generalize their linear counterparts, under both the Gaussian and elliptically-contoured assumptions, and produce both improved detection accuracies and reduced false alarm rates. We study the Gaussianity of the data in Hilbert spaces with kernel dependence estimates, provide low-rank kernel versions to cope with the high computational cost of the methods, and give prescriptions about the selection of the kernel functions and their parameters. We illustrate the performance of the introduced kernel methods in both pervasive and anom…
Semi-Supervised Remote Sensing Image Classification based on Clustering and the Mean Map Kernel
2008
This paper presents a semi-supervised classifier based on the combination of the expectation-maximization (EM) algorithm for Gaussian mixture models (GMM) and the mean map kernel. The proposed method uses the most reliable samples in terms of maximum likelihood to compute a kernel function that accurately reflects the similarity between clusters in the kernel space. The proposed method improves classification accuracy in situations where the available labeled information does not properly describe the classes in the test image.
Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images
2023
Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several wavelets families (so called kernels) are able to generate different multi-resolution representations of the original image, and which of them produces more salient images is not yet clear. In this study, an in-depth analysis is performed by comparing different wavelet kernels and by evaluating their impact on predictive capabilities of radiomic models. A dataset composed of 1589 chest X-ray ima…