Search results for "Kerr"
showing 10 items of 494 documents
Stability of the intrinsic energy vanishing in the Schwarzschild metric under a slow rotation
2014
The linearized Kerr metric is considered and put in some Gauss coordinates which are further {\em intrinsic} ones. The linear and angular 4-momenta of this metric are calculated in these coordinates and the resulting value is just zero. Thus, the global vanishing previously found for the Schwarzschild metric remains linearly stable under slow rotational perturbations of this metric.
Quantum Gravity Effects in the Kerr Spacetime
2010
We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within Quantum Einstein Gravity (QEG). In particular we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space avilable for the Penrose process. The positivity properties of the effective vacuum energy momentum tensor are also discussed and the "dressing" of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical f…
Interacting Solitons in a High Index Glass
2010
We investigate the interaction of two coherent 2D+1 solitary beams in a high index glass.
Interpretation of negative birefringence observed in strong-field optical pump-probe experiments: High-order Kerr and plasma grating effects
2013
The analysis of negative birefringence optically induced in major air components (Loriot et al., [1, 2]) is revisited in light of the recently reported plasma grating-induced phase-shift effect predicted for strong field pump-probe experiments (Wahlstrand and Milchberg, [3]). The nonlinear birefrin- gence induced by a short and intense laser pulse in argon is measured by femtosecond time-resolved polarimetry. The experiments are performed with degenerate colors, where the pump and probe beam share the same spectrum, or with two different colors and non-overlapping spectra. The in- terpretation of the experimental results is substantiated using a numerical 3D+1 model accounting for nonlinear…
Observation of collapse arrest in pure kerr media sustained by a parametric interaction
2013
We demonstrate a parametric interaction based on four wave mixing that can arrest the collapse and stabilize solitary propagation in a pure Kerr material by controlling the wavelength of the interacting beams.
Colloidal and molecular electro-optics
2010
The Kerr effect, also known as the quadratic electro-optic effect, was discovered more than a hundred years ago by John Kerr, a Scottish physicist [1]. It describes the change in the refractive index of a material in response to an applied electric field. Around 1950 its application swayed from simple to complex fluids. A strong contribution was made through a number of seminal papers by the French polymer scientist H Benoit [2–4]. These and others initiated wide interest from researchers working on macromolecular solutions or colloidal dispersions. Experimental activities were further boosted by the advent of the laser and theoretical approaches strongly drew from growing computer power. U…
Laser-induced field-free alignment of the OCS molecule
2007
We investigate the dynamical alignment of jet-cooled OCS molecules induced by a short laser pulse. The alignment is measured through the orientational contribution of the optical Kerr effect using a second weak laser pulse as a probe. Maximum alignment is observed at conditions close to saturation of ionization. The results are analysed with a quantum mechanical model solving for the rotational dynamics.
Optical kerr effect in the strong field regime
2013
The optical Kerr response of hydrogen atom submitted to a strong and short near infrared laser pulse excitation is studied by solving the full 3D time-dependent Schro¨dinger equation. The nonlinear polarization evaluated at the driving field frequency is compared to the canonical expression derived from perturbation theory. A discrepancy between the two models is observed at large intensity affecting the nonlinear propagation of short and intense laser pulses.
Incoherent modulation instability in instantaneous nonlinear Kerr media
2005
We demonstrate theoretically and experimentally in an optical fiber system that partially temporally incoherent light exhibits modulational instability during its propagation in an instantaneous response nonlinear medium. We show that the modulation frequency and gain are substantially increased with respect to the corresponding values of coherent modulational instability.
Switching Dynamics of Dark Solitons in Kerr Microresonators
2019
Dissipative Kerr solitons (DKS) are localized structures in optical resonators that arise from a double balance between dispersion and Kerr effect, and linear loss and parametric gain [1]. The periodic nature of DKS corresponds to frequency combs. DKS can be generated in high-Q microresonators for diverse applications, from coherent communications to precision frequency synthesis [1]. Most studies of DKS have focused on microresonator cavities operating in the anomalous dispersion regime, where the waveforms correspond to bright soliton pulses. Coherent microresonator combs can also be formed in the normal dispersion regime [2]. The time-domain waveform corresponds to a localized dark-pulse…