Search results for "Kerr"
showing 10 items of 494 documents
Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers
2014
We demonstrate that nonlinear polarization coupling in a fiber ring laser without polarization-selective elements, subject to the effects of average anomalous dispersion, Kerr effect, and nonlinear gain saturation, can lead to the antisynchronization of spatiotemporal chaos into a wide variety of ordered laminar states of orthogonal polarization temporal domains. These antiphase polarization domains include stable lattices of soliton trains with high duty cycle at repetition rates of hundreds of MHz, as well as sparse trains of coupled dark and bright solitary waves.
Kerr effect as a tool for the investigation of dynamic heterogeneities
2006
We propose a dynamic Kerr effect experiment for the distinction between dynamic heterogeneous and homogeneous relaxation in glassy systems. The possibility of this distinction is due to the inherent nonlinearity of the Kerr effect signal. We model the slow reorientational molecular motion in supercooled liquids in terms of non-inertial rotational diffusion. The Kerr effect response, consisting of two terms, is calculated for heterogeneous and for homogeneous variants of the stochastic model. It turns out that the experiment is able to distinguish between the two scenarios. We furthermore show that exchange between relatively 'slow' and 'fast' environments does not affect the possibility of …
Counter-propagating difference-frequency generation in diamond with terahertz fields
2013
The nonlinear interaction of terahertz (THz) pulses with optical fields in Kerr, gaseous media is a key ingredient for broadband THz detection schemes [1]. Terahertz field-induced second harmonic generation in solid-state media has also been considered for THz detection and as a tool e.g. for liquid dynamics investigations [2,3], while four-wave mixing has been addressed as a possible mechanism for THz generation [4,5]. © 2013 IEEE.
Vectorial Kerr-cavity solitons.
2000
It is shown that a Kerr cavity with different losses for the two polarization components of the field can support both dark and bright cavity solitons (CS’s). A parametrically driven Ginzburg–Landau equation is shown to describe the system for large-cavity anisotropy. In one transverse dimension the nonlinear dynamics of the bright CS’s is numerically investigated.
Optimized factor of merit of the magneto-optical Kerr effect of ferromagnetic thin films
2000
This paper deals with the optimization of the factor of merit of the magneto-optical Kerr effect of a resonant multilayer cavity including a ferromagnetic film. This optimization is of interest in the context of optical storage technology. Using numerical simulations based on the Green's dyadic technique, we discuss a route to obtain magneto-optical multilayers with a vanishing ellipticity and factors of merit (with respect to the bulk magnetic material) larger than 3 on a broad range of wavelengths, significantly higher than the actual state of the art.
Statistical characterization of the internal structure of noiselike pulses using a nonlinear optical loop mirror
2016
Abstract In this work we study statistically the internal structure of noiselike pulses generated by a passively mode-locked fiber laser. For this purpose, we use a technique that allows estimating the distribution of the amplitudes of the sub-pulses in the bunch. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM). It requires the measurement of the energy transfer characteristic of the pulses through the NOLM, and the numerical resolution of a system of nonlinear algebraic equations. The results yield a strongly asymmetric distribution, with a high-amplitude tail that is compatible with the existence of extreme-inte…
Higher-order Kerr effect in ultrashort laser pulse propagation and laser filamentation
2011
We discuss the contribution of the higher-order Kerr effect (HOKE) to the propagation of ultrashort laser pulses in several contexts. We show that their consideration is necessary to adequately reproduce experimental data about harmonics generation, propagation in hollow-core fibers, and laser filamentation. In the latter case, our results show that the HOKE play a key role for short pluses and/or long wavelengths, while the plasma contributes more for long pulses and/or short wavelengths.
Transition from plasma-driven to Kerr-driven laser filamentation.
2011
While filaments are generally interpreted as a dynamic balance between Kerr focusing and plasma defocusing, the role of the higher-order Kerr effect (HOKE) is actively debated as a potentially dominant defocusing contribution to filament stabilization. In a pump-probe experiment supported by numerical simulations, we demonstrate the transition between two distinct filamentation regimes at 800 nm. For long pulses (1.2 ps), the plasma substantially contributes to filamentation, while this contribution vanishes for short pulses (70 fs). These results confirm the occurrence, in adequate conditions, of filamentation driven by the HOKE rather than by plasma.
Excitation of rotons in parahydrogen crystals: The laser-induced-molecular-alignment mechanism
2013
Solid parahydrogen (p-H₂) is known to support long-lived coherences, of the order of 100 ps, which enables high-resolution spectroscopy in the time domain. Rotational Raman-type excitations to sublevels of J=2 are delocalized due to electric-quadrupole–quadrupole coupling in p-H₂ crystals, and the resulting states can be characterized as rotons. Wave packets of rotons exhibit molecular alignment with respect to laboratory coordinates. Here the concept of field-free molecular alignment, induced by strong ultrashort laser pulses, is extended into a molecular solid case. We derive a solid-state analog for the gas-phase alignment measure and illustrate the time-dependent alignment degree in p-H…
Numerical simulation of Kerr nonlinear systems : analyzing non-classical dynamics
2019
Abstract We simulate coherent driven free dissipative Kerr nonlinear system numerically using Euler’s method by solving Heisenberg equation of motion and time evolving block decimation (TEBD) algorithm, and demonstrate how the numerical results are analogous to classical bistability. The comparison with analytics show that the TEBD numerics follow the quantum mechanical exact solution obtained by mapping the equation of motion of the density matrix of the system to a Fokker-Plank equation . Comparing between two different numerical techniques, we see that the semi-classical Euler’s method gives the dynamics of the system field of one among two coherent branches, whereas TEBD numerics genera…