Search results for "Kinase inhibitor"
showing 10 items of 414 documents
Beckwith–Wiedemann syndrome: multiple molecular mechanisms
2006
Beckwith–Wiedemann syndrome (BWS) is a congenital overgrowth condition with an increased risk of developing embryonic tumours, such as Wilms' tumour. The cardinal features are abdominal wall defects, macroglossia and gigantism. BWS is generally sporadic; only 10–15% of cases are familial. A variety of molecular aberrations have been associated with BWS. The only mutations within a gene are loss-of-function mutations in the CDKN1C gene, which codes for an imprinted cell-cycle regulator. CDKN1C mutations appear to be particularly associated with umbilical abnormalities, but not with increased predisposition to Wilms' tumour. In the remaining BWS subgroups, a disturbance of the tight epigeneti…
Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine
2012
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, t…
GSK-3? Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutra…
2021
Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3β in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3β. Transfection of MIA-PaCa-2 cells with WT-GSK-3β increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3β often increased therapeutic sensitivity. An exception was observed wi…
De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.
2013
Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…
Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas
2007
AbstractIntegrative genomic and gene-expression analyses have identified amplified oncogenes in B-cell non-Hodgkin lymphoma (B-NHL), but the capability of such technologies to localize tumor suppressor genes within homozygous deletions remains unexplored. Array-based comparative genomic hybridization (CGH) and gene-expression microarray analysis of 48 cell lines derived from patients with different B-NHLs delineated 20 homozygous deletions at 7 chromosome areas, all of which contained tumor suppressor gene targets. Further investigation revealed that only a fraction of primary biopsies presented inactivation of these genes by point mutation or intragenic deletion, but instead some of them w…
TORC1 controls G1–S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway
2015
The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1–S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCFCdc4 (Skp1/Cul1/F-box protein) ubiquitin ligase complex.…
Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene.
2000
In human umbilical vein endothelial cells and in human umbilical vein endothelial cell-derived EA.hy 926 cells, staurosporine (Stsp) and its glycosidic indolocarbazole analogs 7-hydroxystaurosporine (UCN-01) and 4'-N-benzoyl staurosporine (CGP 41251) enhanced nitric-oxide synthase (NOS) III mRNA expression (analyzed by RNase protection assay), protein expression (determined by Western blot), and activity [measured by rat fetal lung fibroblast (RFL-6) reporter cell assay] in a concentration- and time-dependent manner. In contrast, the bisindolylmaleimide analogs GF 109203X, Ro 31-8220 and Go 6983 had no effect on NOS III expression, and Go 6976, a methyl- and cyanoalkyl-substituted nonglycos…
Type 1 diabetic mellitus patients with increased atherosclerosis risk display decreased CDKN2A/2B/2BAS gene expression in leukocytes
2019
Background Type 1 diabetes mellitus (T1DM) patients display increased risk of cardiovascular disease (CVD) and are characterized by a diminished regulatory T (Treg) cell content or function. Previous studies have shown an association between decreased CDKN2A/2B/2BAS gene expression and enhanced CVD. In the present study the potential relationship between CDKN2A/2B/2BAS gene expression, immune cell dysfunction and increased cardiovascular risk in T1DM patients was explored. Methods A cross-sectional study was performed in 90 subjects divided into controls and T1DM patients. Circulating leukocyte subpopulations analysis by flow cytometry, expression studies on peripheral blood mononuclear cel…
CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.
2014
SummaryCancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6− progenitor cells do not give rise to metastatic lesions but, when…