Search results for "Krüppel"

showing 3 items of 3 documents

Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension

2019

Uric acid (UA) is a promising protective treatment in ischaemic stroke, but the precise molecular targets underlying its in vivo beneficial actions remain unclear. High concentrations of UA inhibit angiogenesis of cultured endothelial cells via Krüppel-like factor 2 (KLF)-induced downregulation of vascular endothelial growth factor (VEGF), a pro-angiogenic mediator that is able to increase blood–brain barrier (BBB) permeability in acute stroke. Here, we investigated whether UA treatment after ischaemic stroke protects brain endothelial cell functions and modulates the KLF2-VEGF-A axis. Transient intraluminal middle cerebral artery (MCA) occlusion/reperfusion was induced in adult male sponta…

0301 basic medicineMaleVascular Endothelial Growth Factor AVascular endothelial growth factor-AAngiogenesisBiochemistryRats Inbred WKYAntioxidantschemistry.chemical_compound0302 clinical medicineRats Inbred SHRIschaemic strokeEvans BlueBlood-brain barrierBrainKrüppel-like factor 2Vascular endothelial growth factorEndothelial stem cellStrokeVascular endothelial growth factor Amedicine.anatomical_structureNeuroprotective AgentsTreatment OutcomeBlood-Brain Barrier030220 oncology & carcinogenesisHypertensioncardiovascular systemmedicine.symptommedicine.medical_specialtyKruppel-Like Transcription FactorsBrain damageBlood–brain barrierNeuroprotectionCell Line03 medical and health sciencesDouble-Blind MethodInternal medicinemedicineAnimalsHumanscardiovascular diseasesPharmacologybusiness.industryRatsUric Acid030104 developmental biologyEndocrinologychemistryEndothelium VascularAngiogenesisbusinessBiomarkers
researchProduct

Connecting temporal identity to mitosis: the regulation of Hunchback in Drosophila neuroblast lineages.

2006

Both in vertebrates and invertebrates, neural stem cells generate different cell types at different times during development. It has been suggested that this process depends on temporal identity transitions of neural progenitors, but the underlying mechanism has not been resolved, yet. Recently, Drosophila neuroblasts (NBs) have been shown to be an excellent model system to investigate this subject. Here, changes in temporal identity are regulated by sequential and transient expression of transcription factors in the NB, such as Hunchback (Hb) and Kruppel (Kr). The temporal expression profile is maintained in the progeny. Hb is expressed first and thus defines the earliest identity in a giv…

Retinal Ganglion CellsCell typeReceptors SteroidKruppel-Like Transcription FactorsDown-RegulationMitosisNerve Tissue ProteinsBiologyCell fate determinationKrüppelNeuroblastAnimalsDrosophila ProteinsNuclear export signalMolecular BiologyMitosisTranscription factorGeneticsNeuronsModels GeneticNuclear ProteinsCell DifferentiationCell BiologyNeural stem cellDNA-Binding ProteinsProtein BiosynthesisDrosophilaDevelopmental BiologyTranscription FactorsCell cycle (Georgetown, Tex.)
researchProduct

Reverse-engineering post-transcriptional regulation of gap genes in Drosophila melanogaster

2013

16 páginas, 6 figuras, 1 tabla

Systems biologyContext (language use)Computational biology03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineKrüppelGeneticsAnimalsDrosophila ProteinsRNA MessengerMolecular BiologyPost-transcriptional regulationlcsh:QH301-705.5Ecology Evolution Behavior and SystematicsGap gene030304 developmental biologyGenetics0303 health sciencesEcologybiologyModels GeneticProtein StabilitySystems BiologyGene Expression Regulation Developmentalbiology.organism_classificationRepressor ProteinsDrosophila melanogasterComputational Theory and Mathematicslcsh:Biology (General)Modeling and SimulationIdentifiabilityDrosophila melanogasterGenetic Engineering030217 neurology & neurosurgeryDrosophila ProteinResearch Article
researchProduct