Search results for "LIBS"

showing 5 items of 35 documents

Double Laser LIBS and micro-XRF spectroscopy applied to characterize materials coming from the Greek-Roman theater of Taormina

2009

The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown, in recent years, its great potential for rapid qualitative analysis of materials. The possibility to implement a portable instrument that perform LIBS analysis makes this technique particularly useful for in situ analysis in the field of cultural heritages. The aim of this work is to compare the results, obtained by LIBS measurements with X-Ray Fluorescence (XRF) ones, on calcareous and refractory materials coming from the Greek-Roman theater of Taormina. Calibration curves for LIBS and XRF were obtained by measuring certified reference materials and using them as standards. LIBS measurements we…

ChemistryCalibration curvebusiness.industryX-ray fluorescenceLaserCollimated lightSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)law.inventionCertified reference materialsOpticslawCalibrationLIBS micro-XRF calcareous material refractory material cultural heritagesLaser-induced breakdown spectroscopySpectroscopybusiness
researchProduct

Optimization of spodumene identification by statistical approach for laser-induced breakdown spectroscopy data of lithium pegmatite ores

2021

Mapping with laser-induced breakdown spectroscopy (LIBS) can offer more than just the spatial distribution of elements: the rich spectral information also enables mineral recognition. In the present study, statistical approaches were used for the recognition of the spodumene from lithium pegmatite ores. A broad spectral range (280–820 nm) with multiple lines was first used to establish the methods based on vertex component analysis (VCA) and K-means and DBSCAN clusterings. However, with a view to potential on-site applications, the dimensions of the datasets must be reduced in order to accomplish fast analysis. Therefore, the capability of the methods in mineral identification was tested wi…

Materials scienceMineralLIBSspektroskopiatilastomenetelmätpegmatiititAnalytical chemistrychemistry.chemical_elementDBSCANVCASpodumenechemistryoptimointilitiummalmimineraalitalkuaineanalyysimineraalitLithiumLaser-induced breakdown spectroscopySpectroscopyInstrumentationK-meansSpectroscopyPegmatitelithium pegmatite ore
researchProduct

Time‐gated Raman and laser‐induced breakdown spectroscopy in mapping of eudialyte and catapleiite

2019

Abstract Raman analysis of rock samples containing rare earth elements (REEs) is challenging due to the strong fluorescence, which may mask the weaker Raman signal. In this research, time‐gated (TG) Raman has been applied to the construction of the mineral distribution map from REE‐bearing rock. With TG Raman, material is excited with a short subnanosecond laser pulse, and the Raman signal is collected within a picosecond‐scale time window prior to the formation of a strong fluorescent signal by means of single‐photon avalanche diode array. This allows signal readout with a significantly reduced fluorescence background. TG Raman maps are used to reveal the location of valuable minerals and …

Materials science010401 analytical chemistryAnalytical chemistryEudialyteMineral mappingtime‐gated Raman02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesrock analysissymbols.namesakelaser‐induced breakdown spectroscopy (LIBS)symbolsengineeringGeneral Materials ScienceLaser-induced breakdown spectroscopymineral mapping0210 nano-technologyRaman spectroscopySpectroscopyREE‐bearing mineralsJournal of Raman Spectroscopy
researchProduct

Bi2Se3 Nanostructured Thin Films as Perspective Anodes for Aqueous Rechargeable Lithium-Ion Batteries

2022

This research was funded by the European Regional Development Fund Project (ERDF) No. 1.1.1.1/19/A/139. Y.R. acknowledges the support of post-doctoral ERDF project No. 1.1.1.2/VIAA/4/20/694. V.L. also acknowledges the support of “Strengthening of the capacity of doctoral studies at the University of Latvia within the framework of the new doctoral model”, identification No. 8.2.2.0/20/I/006. A.S. acknowledges the support from the Institute of Solid State Physics, University of Latvia, which, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

anodeaqueous rechargeable lithium-ion batteries (ARLIBs)bismuth oxide (Bi2O3)bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>); anode; aqueous rechargeable lithium-ion batteries (ARLIBs); solid electrolyte interphase (SEI); bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>); electrochemical performanceElectrochemistryelectrochemical performanceEnergy Engineering and Power Technology:NATURAL SCIENCES::Physics [Research Subject Categories]Electrical and Electronic Engineeringsolid electrolyte interphase (SEI)bismuth selenide (Bi2Se3)
researchProduct

Mural salts characterization of "Penitenziati" mural paintings in Chiaramonte Palace (Palermo)

2009

XRF LIBS SEM ESR Cultural HeritagesSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct