Search results for "LIGHT-SCATTERING"
showing 10 items of 12 documents
About entangled networks of worm-like micelles: a rejected hypothesis
1996
We report new results from small-angle neutron scattering on d(1 2)-cyclohexane/lecithin/water micellar solutions performed as a function of the water content (w(o)), temperature (T) and dispersed phase volume fraction (phi). The data from dilute samples are interpretable in terms of the existence of giant cylindrical reverse micelles and are well fit with a core-shell model (that provides the micelle structure and dimensions) with values of 28 and 45 Angstrom for the inner core and the outer shell radii, almost independent on temperature and concentration. Such a result could appear consistent with the current idea that worm-like micelles are living polymers. On the contrary, the appearanc…
Polymer-induced phase separation in suspensions of bacteria
2010
We study phase separation in suspensions of two unrelated species of rod-like bacteria, Escherichia coli and Sinorhizobium meliloti, induced by the addition of two different anionic polyelectrolytes, sodium polystyrene sulfonate or succinoglycan, the former being synthetic and the latter of natural origin. Comparison with the known behaviour of synthetic colloid-polymer mixtures and with simulations show that "depletion" (or, equivalently, "macromolecular crowding") is the dominant mechanism: exclusion of the non-adsorbing polymer from the region between two neighbouring bacteria creates an unbalanced osmotic force pushing them together. The implications of our results for understanding phe…
Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels
2020
Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the …
Quasi-isoactinic reactor for photocatalytic kinetics studies
2007
Photochemical reactors characterized by almost uniform values of the local volumetric rate of photon absorption (LVRPA), i.e., quasi-isoactinic photoreactors, are particularly suitable for assessing the influence of radiant field intensity in kinetic studies. In this work, Monte Carlo simulations have been performed to obtain LVRPA values in a flat photoreactor irradiated on both sides. This configuration appears to be particularly suitable for obtaining quasi-isoactinic conditions. The influence of catalyst albedo and scattering phase function is assessed, and the conditions for obtaining iso-actinicity are discussed. Finally, these conditions are related to an easy-to-measure parameter, n…
Biomineral Amorphous Lasers through Light-Scattering Surfaces Assembled by Electrospun Fiber Templates
2018
New materials aim at exploiting the great control of living organisms over molecular architectures and minerals. Optical biomimetics has been widely developed by microengineering, leading to photonic components with order resembling those found in plants and animals. These systems, however, are realized by complicated and adverse processes. Here we show how biomineralization might enable the one-step generation of components for amorphous photonics, in which light is made to travel through disordered scattering systems, and particularly of active devices such as random lasers, by using electrospun fiber templates. The amount of bio-enzymatically produced silica is related to light-scatterin…
Structural Organization of Poly(vinyl alcohol) Hydrogels Obtained by Freezing and Thawing Techniques: A SANS Study
2005
The structural organization of matter in poly(vinyl alcohol) (PVA) hydrogels obtained by repeatedly freezing and thawing dilute solutions of PVA in D2O is investigated by use of small-angle neutron scattering measurements (SANS). This study is the first systematic and quantitative investigation in the medium range of length scales on PVA hydrogels obtained by freezing and thawing techniques. The studied gels have a complex hierarchical structure, extending over a wide range of length scales. The structural organization on the micron length scale originates from the presence of two separated phases constituted by polymer-rich and polymer-poor regions. The network structure may be interpreted…
Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids: Isobutyric Acid-Water and 1-Butanol-Water in a Spinning-Drop …
2006
We report definitive evidence for an effective interfacial tension between two types of miscible fluids using spinning-drop tensiometry (SDT). Isobutyric acid (IBA) and water have an upper critical solution temperature (UCST) of 26.3 degrees C. We created a drop of the IBA-rich phase in the water-rich phase below the UCST and then increased the temperature above it. Long after the fluids have reached thermal equilibrium, the drop persists. By plotting the inverse of the drop radius cubed (r(-)(3)) vs the rotation rate squared (omega(2)), we confirmed that an interfacial tension exists and estimated its value. The transition between the miscible fluids remained sharp instead of becoming more…
Solubilization of an Organic Solute in Aqueous Solutions of Unimeric Block Copolymers and Their Mixtures with Monomeric Surfactant: Volume, Surface T…
2008
The ability of aqueous systems, formed by unimeric copolymers and their mixtures with a monomeric surfactant, in solubilizing large quantities of 1-nitropropane (PrNO2) was explored. The copolymers are F68 and L64, which differ for the hydrophilicity, and the surfactant is sodium dodecanoate. For a better understanding of the mechanism of solubilization, thermodynamic (volume and differential scanning calorimetry), spectroscopy (steady-state fluorescence), viscosity, and interfacial investigations were carried out. PrNO2 causes the micellization of the unimeric copolymer, and the required amount of PrNO2 depends on the composition, the copolymer nature, and the temperature. Large quantities…
Relaxation phenomena in mixed isomeric alcohols by Mandelstam-Brillouin scattering
1991
Mandelstam-Brillouin scattering data in mixed isomeric alcohols n-pentanol (nPe-OH) and 2-methyl-2-butanol (2Me-2BuOH) are presented. The hypersonic velocity and normalized absorption are measured as a function of the scattering angle, in the temperature range from - 15-degrees-C to + 45-degrees-C, and as a function of n-PeOH molar fraction going from the pure n-PeOH to the pure 2Me-2BuOH. The experimental results confirm the existence of a shear relaxation phenomenon in the GHz region, that has been previously detected in pure liquids. The temperature dependence of the relaxation time tau-s and of the shear modulus G-infinity evaluated within viscoelastic liquid models, support the existen…
Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance
2009
International audience; Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device.