Search results for "La Protein"

showing 5 items of 245 documents

Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC.

1994

We have analysed 118 families with inherited medullary thyroid carcinoma (MTC) for mutations of the RET proto-oncogene. These included cases of multiple endocrine neoplasia types 2A (MEN 2A) and 2B (MEN 2B) and familial MTC (FMTC). Mutations at one of 5 cysteines in the extracellular domain were found in 97% of patients with MEN 2A and 86% with FMTC but not in MEN 2B patients or normal controls. 84% of the MEN2A mutations affected codon 634. MEN 2A patients with a Cys634 to Arg substitution had a greater risk of developing parathyroid disease than those with other codon 634 mutations. Our data show a strong correlation between disease phenotype and the nature and position of the RET mutatio…

medicine.medical_specialtyendocrine system diseasesOncogene RETDNA Mutational AnalysisMolecular Sequence DataMultiple endocrine neoplasia type 2RET proto-oncogeneBiologymedicine.disease_causeProto-Oncogene MasInternal medicineProto-Oncogene ProteinsProto-OncogenesGeneticsmedicineDrosophila ProteinsHumansPoint MutationThyroid NeoplasmsMultiple endocrine neoplasiaDNA PrimersMutationBase SequencePoint mutationMultiple Endocrine NeoplasiaProto-Oncogene Proteins c-retReceptor Protein-Tyrosine KinasesExonsmedicine.diseasePhenotypeEndocrinologyPhenotypeProto-Oncogene Proteins c-retCarcinoma MedullaryCancer researchNature genetics
researchProduct

Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila

2016

AbstractMyotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3′ untranslated region (3′ UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-co…

musculoskeletal diseases0301 basic medicineUntranslated regioncongenital hereditary and neonatal diseases and abnormalitiesMotor ActivityBiologyMyotonic dystrophyArticle03 medical and health sciences0302 clinical medicineRNA IsoformsmicroRNAmedicineAnimalsDrosophila ProteinsMyotonic DystrophyRegulation of gene expressionGeneticsMultidisciplinaryWild typeNuclear Proteinsmedicine.diseaseMicroRNAsDrosophila melanogasterPhenotype030104 developmental biologyGene Expression RegulationFlight AnimalTrinucleotide Repeat ExpansionTrinucleotide repeat expansion030217 neurology & neurosurgeryDrosophila ProteinScientific Reports
researchProduct

Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model

2012

SummaryMyotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of…

musculoskeletal diseasesSarcomerescongenital hereditary and neonatal diseases and abnormalitiesNeuroscience (miscellaneous)lcsh:MedicineMedicine (miscellaneous)RNA-binding proteinGenes InsectBiologyMyotonic dystrophyGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically Modifiedchemistry.chemical_compoundImmunology and Microbiology (miscellaneous)RNA interferencelcsh:PathologymedicineMBNL1AnimalsDrosophila ProteinsHumansMyotonic DystrophyGeneticsMuscleslcsh:RAlternative splicingNuclear ProteinsRNA-Binding ProteinsEpistasis Geneticmedicine.diseaseDisease Models AnimalchemistryGene Knockdown TechniquesDrosophilaFemaleRNA InterferenceTrinucleotide repeat expansionTrinucleotide Repeat ExpansionDrosophila Proteinlcsh:RB1-214Genetic screenResearch ArticleDisease Models & Mechanisms
researchProduct

Mtlinteracts with members of Egfr signaling and cell adhesion genes in the Drosophila eye

2011

Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with memb…

rho GTP-Binding ProteinsGeneticsOmmatidial rotationRHOAbiologyCytoskeleton organizationCell PolarityCDC42Cell biologyErbB ReceptorsPhenotypeInsect ScienceCell polarityCell Adhesionbiology.proteinAnimalsDrosophila ProteinsImmunoglobulin superfamilyDrosophilaCompound Eye ArthropodReceptors Invertebrate PeptideCell adhesionpsychological phenomena and processesDrosophila ProteinSignal TransductionFly
researchProduct

The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress.

2021

Summary: Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer’s disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents…

transposonsNeocortexMiceHeterochromatinProlyl isomeraseDrosophila ProteinsBiology (General)PhosphorylationRNA Small InterferingTissue homeostasisCells CulturedSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNeuronsLamin Type BChemistryHP1phosphorylationneurodegenerationnuclear envelopePeptidylprolyl IsomeraseCell biologyDrosophila heterochromatin HP1 Lamin mechanical stress neurodegeneration nuclear envelope phosphorylation PIN1 transposonsNuclear laminaDrosophilaRNA InterferencePremature agingQH301-705.5HeterochromatinNuclear EnvelopeDrosophila; heterochromatin; HP1; Lamin; mechanical stress; neurodegeneration; nuclear envelope; phosphorylation; PIN1; transposonsSettore BIO/11 - Biologia MolecolareSettore MED/08 - Anatomia PatologicaGeneral Biochemistry Genetics and Molecular BiologyPIN1Alzheimer DiseaseSettore MED/05 - Patologia ClinicaAnimalsHumansHeterochromatin maintenancemechanical stressheterochromatinmechanical streMice Inbred C57BLNIMA-Interacting Peptidylprolyl IsomeraseChromobox Protein Homolog 5DNA Transposable ElementsHeterochromatin protein 1Stress MechanicalLaminLaminCell reports
researchProduct