Search results for "Lagrangian"

showing 10 items of 204 documents

Evolution by mean curvature flow of Lagrangian spherical surfaces in complex Euclidean plane

2016

We describe the evolution under the mean curvature flow of embedded Lagrangian spherical surfaces in the complex Euclidean plane $\mathbb{C}^2$. In particular, we answer the Question 4.7 addressed in [Ne10b] by A. Neves about finding out a condition on a starting Lagrangian torus in $\mathbb{C}^2$ such that the corresponding mean curvature flow becomes extinct at finite time and converges after rescaling to the Clifford torus.

Mathematics - Differential GeometryMean curvature flowApplied Mathematics010102 general mathematicsMathematical analysisTorusClifford torus01 natural sciencessymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesEuclidean geometrysymbolsFOS: MathematicsPrimary 53C44 53C40 Secondary 53D12010307 mathematical physics0101 mathematicsFinite timeMathematics::Symplectic GeometryAnalysisLagrangianMathematics
researchProduct

Symplectic Applicability of Lagrangian Surfaces

2009

We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equa- tions. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.

Mathematics - Differential GeometryPure mathematicsdifferential invariantsSymplectic vector spaceFOS: MathematicsSymplectomorphismMoment mapMathematics::Symplectic GeometryMathematical PhysicsMathematicsSymplectic manifoldapplicabilityLagrangian surfaceslcsh:MathematicsMathematical analysisSymplectic representationmoving frameslcsh:QA1-939Symplectic matrixaffine symplectic geometryAffine geometry of curvesDifferential Geometry (math.DG)Lagrangian surfaces; affine symplectic geometry; moving frames; differential invariants; applicability.Geometry and TopologyAnalysisSymplectic geometry
researchProduct

Lagrangian finite element modelling of dam–fluid interaction: Accurate absorbing boundary conditions

2007

The dynamic dam-fluid interaction is considered via a Lagrangian approach, based on a fluid finite element (FE) model under the assumption of small displacement and inviscid fluid. The fluid domain is discretized by enhanced displacement-based finite elements, which can be considered an evolution of those derived from the pioneering works of Bathe and Hahn [Bathe KJ, Hahn WF. On transient analysis of fluid-structure system. Comp Struct 1979;10:383-93] and of Wilson and Khalvati [Wilson EL, Khalvati M. Finite element for the dynamic analysis of fluid-solid system. Int J Numer Methods Eng 1983;19:1657-68]. The irrotational condition for inviscid fluids is imposed by the penalty method and con…

Mechanical EngineeringMathematical analysisFinite element methodComputer Science ApplicationsBoundary layerDam–fluid interactionClassical mechanicsInviscid flowSurface waveModeling and SimulationFluid dynamicsAbsorbing boundaryDynamic analysisGeneral Materials ScienceBoundary value problemDispersion (water waves)Lagrangian finite elementDisplacement (fluid)Civil and Structural EngineeringMathematics
researchProduct

Stable moment mappings and singular lagrangian Fibrations

2005

We study singular Lagrangian fibrations given by moment mappings using cohomological methods. We give a theorem for the stability of these foliations and construct a symplectic version of Mather’s stable mapping theorem.

Moment (mathematics)Pure mathematicssymbols.namesakeMathematics::Dynamical SystemsGeneral MathematicsMathematical analysissymbolsMathematics::Algebraic TopologyMathematics::Symplectic GeometryStability (probability)LagrangianSymplectic geometryMathematicsThe Quarterly Journal of Mathematics
researchProduct

HHT-α and TR-BDF2 schemes for dynamic contact problems

2023

This work focuses on the numerical performance of HHT-α and TR-BDF2 schemes for dynamic frictionless unilateral contact problems between an elastic body and a rigid obstacle. Nitsche's method, the penalty method, and the augmented Lagrangian method are considered to handle unilateral contact conditions. Analysis of the convergence of an opposed value of the parameter α for the HHT-α method is achieved. The mass redistribution method has also been tested and compared with the standard mass matrix. Numerical results for 1D and 3D benchmarks show the functionality of the combinations of schemes and methods used.

Nitsche's methodtime-marching schemescontact problemfinite elements[NLIN] Nonlinear Sciences [physics]augmented Lagrangian method[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA][PHYS.MECA] Physics [physics]/Mechanics [physics]elastodynamics
researchProduct

Chiral Dynamics of the two Lambda(1405) States

2004

Using a chiral unitary approach for the meson--baryon interactions, we show that two octets of J^{\pi}=1/2^- baryon states, which are degenerate in the limit of exact SU(3) symmetry, and a singlet are generated dynamically. The SU(3) breaking produces the splitting of the two octets, resulting in the case of strangeness S=-1 in two poles of the scattering matrix close to the nominal \Lambda(1405) resonance. These poles are combinations of the singlet state and the octets. We show how actual experiments see just one effective resonance shape, but with properties which change from one reaction to another.

Nuclear TheoryLambda(1405)High Energy Physics::Latticeinelastic scattering [meson baryon]Nuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaSU(3) [symmetry]singlet [baryon]symmetry breakingcoupled channelHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Phenomenologyddc:530elastic scattering [meson baryon]chiral [effective Lagrangian]numerical calculationsNuclear Experimentoctet [baryon]analytic properties [scattering amplitude]
researchProduct

Transition form factors of the N(*()1535) as a dynamically generated resonance

2007

We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study these properties for the N*(1535) which appears dynamically generated from the strong interaction of mesons and baryons. Within this coupled channel chiral unitary approach, we evaluate the A_1/2 and S_1/2 helicity amplitudes as a function of Q^2 for the electromagnetic N*(1535) to gamma* N transition. Within the same formalism we evaluate the cross section for the reactions gamma N to eta N. We find a fair agreement for the absolute values of the transition amplitudes, as well as for the Q^2 dependence of the amplitudes, within theoretical and experimental uncertainties discussed in the…

Nuclear Theorydispersion relationamplitude analysis [helicity]Nuclear Theoryform factor [N(1535)]FOS: Physical sciencesscattering amplitude [meson baryon]Nuclear Theory (nucl-th)nonrelativistictransition [form factor]ddc:530higher-order [Feynman graph]ratio [channel cross section]numerical calculationsNuclear Experimentphotoproduction [eta]chiral [symmetry]effective LagrangianFísicaenergy dependence [channel cross section]coupled channelradiative decay [N(1535)]relativisticinelastic scattering [electron nucleon]inelastic scattering [photon nucleon]
researchProduct

A strategy to study the role of the charm quark in explaining the Delta{I}=1/2 rule

2004

We present a strategy designed to separate several possible origins of the well-known enhancement of the Delta{I}=1/2 amplitude in non-leptonic kaon decays. In particular, we seek to disentangle the contribution of physics at the typical QCD scale (soft-gluon exchange) from the effects at the scale of the charm quark mass. This is achieved by considering QCD with an unphysically light charm quark, so that the theory possesses an approximate SU(4)_L x SU(4)_R chiral symmetry. By computing the relevant operator matrix elements and monitoring their values as the charm quark mass departs from the SU(4)-symmetric situation, the role of the charm quark can be assessed. We study the influence of t…

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeLattice (group)FOS: Physical sciencesScale (descriptive set theory)weak decaysCharm quarkHigh Energy Physics - Phenomenology (hep-ph)lattice QCDHigh Energy Physics - Latticefield theory gauge theory lattice kaon decayskaon physicschiral lagrangiansLimit (mathematics)Quantum chromodynamicsPhysicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - PhenomenologyAmplitudeOperator matrixHigh Energy Physics::Experiment
researchProduct

S-wave Kpi scattering in chiral perturbation theory with resonances

2000

32 páginas, 6 figuras, 2 tablas.-- PACS: 11.80.Et; 12.39.Fe; 13.75.Lb; 13.85.Fb.-- arXiv:hep-ph/0006045v1

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryNuclear TheoryScalar (mathematics)FOS: Physical sciencesMeson–meson interactionsHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)S-wavePartial-wave analysisddc:530Nuclear Experiment (nucl-ex)Nuclear ExperimentPhysicsScatteringtwo-particle final states [Inelastic scattering]ResonanceFísicaRange (mathematics)High Energy Physics - PhenomenologyUnitarisationInelastic scattering: two-particle final statesChiral lagrangiansEnergy (signal processing)
researchProduct

New method for calculating electromagnetic effects in semileptonic beta-decays of mesons

2020

We construct several classes of hadronic matrix elements and relate them to the low-energy constants in Chiral Perturbation Theory that describe the electromagnetic effects in the semileptonic beta decay of the pion and the kaon. We propose to calculate them using lattice QCD, and argue that such a calculation will make an immediate impact to a number of interesting topics at the precision frontier, including the outstanding anomalies in $|V_{us}|$ and the top-row Cabibbo-Kobayashi-Maskawa matrix unitarity.

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryelectromagnetic [effect]MesonNuclear TheoryHigh Energy Physics::LatticeHadronFOS: Physical scienceschiral [perturbation theory]anomalyLattice QCD01 natural sciences530High Energy Physics - ExperimentNuclear Theory (nucl-th)Matrix (mathematics)High Energy Physics - Experiment (hep-ex)Kaon PhysicsPionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesBeta (velocity)lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Precision QEDNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsUnitarity010308 nuclear & particles physicsComputer Science::Information RetrievalHigh Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologysemileptonic decay [meson]lattice field theorysemileptonic decay [pi]Lattice QCDHigh Energy Physics - PhenomenologyChiral Lagrangianslcsh:QC770-798High Energy Physics::Experimentunitarity [CKM matrix]
researchProduct