Search results for "Lamb shift"
showing 5 items of 35 documents
Two-photon exchange correction to2S−2Psplitting in muonicHe3ions
2017
We calculate the two-photon exchange correction to the Lamb shift in muonic $^{3}\mathrm{He}$ ions within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron-$^{3}\mathrm{He}$ quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the $2S$ state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.
Stark broadening of hydrogen spectral lines with fine structure effects
2004
Formalism and numerical code have been elaborated for calculation of hydrogen line profiles in conditions of plasma in which Stark broadening and fine energy splitting are comparable and it is not possible to neglect either of them. It corresponds to the range of electron densities $10^{11} < N_e ({\rm cm}^{-3}) < 10^{15}$ . Lamb shift and spontaneous emission effects have also been included. Computer simulation method was applied in the calculations. Final results have been compared with experimental and theoretical findings by other authors.
Low-energy symmetries of QCD and the structure of the nucleon
2015
Abstract We present some updated results regarding the scalar and electromagnetic structure of the nucleon obtained by the relativistic formulation of chiral effective field theory with baryons. We compare them with previous determinations available in the literature, and show their relevance for searches of physics beyond the standard model in the low energy frontier.
Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed standard model
2019
The framed Standard Model (FSM) predicts a [Formula: see text] boson with mass around 20 MeV in the “hidden sector,” which mixes at tree level with the standard Higgs [Formula: see text] and hence acquires small couplings to quarks and leptons which can be calculated in the FSM apart from the mixing parameter [Formula: see text]. The exchange of this mixed state [Formula: see text] will contribute to [Formula: see text] and to the Lamb shift. By adjusting [Formula: see text] alone, it is found that the FSM can satisfy all present experimental bounds on the [Formula: see text] and Lamb shift anomalies for [Formula: see text] and [Formula: see text], and for the latter for both hydrogen and …
First measurement of proton's charge form factor at very low $Q^2$ with initial state radiation
2017
We report on a new experimental method based on initial-state radiation (ISR) in e-p scattering, in which the radiative tail of the elastic e-p peak contains information on the proton charge form factor ($G_E^p$) at extremely small $Q^2$. The ISR technique was validated in a dedicated experiment using the spectrometers of the A1-Collaboration at the Mainz Microtron (MAMI). This provided first measurements of $G_E^p$ for $0.001\leq Q^2\leq 0.004 (GeV/c)^2$.