Search results for "Leaf Area Index"
showing 10 items of 105 documents
Analysis of Biophysical Variables in an Onion Crop (Allium cepa L.) with Nitrogen Fertilization by Sentinel-2 Observations
2022
The production of onions bulbs (Allium cepa L.) requires a high amount of nitrogen. Ac cording to the demand of sustainable agriculture, the information-development and communication technologies allow for improving the efficiency of nitrogen fertilization. In the south of the province of Buenos Aires, Argentina, between 8000 and 10,000 hectares per year−1 are cultivated in the districts of Villarino and Patagones. This work aimed to analyze the relationship of biophysical variables: leaf area index (LAI), canopy chlorophyll content (CCC), and canopy cover factor (fCOVER), with the nitrogen fertilization of an intermediate cycle onion crop and its effects on yield. A field trial study with …
Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
2021
Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non…
Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model
2013
Abstract: Lookup-table (LUT)-based radiative transfer model inversion is considered a physically-sound and robust method to retrieve biophysical parameters from Earth observation data but regularization strategies are needed to mitigate the drawback of ill-posedness. We systematically evaluated various regularization options to improve leaf chlorophyll content (LCC) and leaf area index (LAI) retrievals over agricultural lands, including the role of (1) cost functions (CFs); (2) added noise; and (3) multiple solutions in LUT-based inversion. Three families of CFs were compared: information measures, M-estimates and minimum contrast methods. We have only selected CFs without additional parame…
On the semi-automatic retrieval of biophysical parameters based on spectral index optimization
2014
Abstract: Regression models based on spectral indices are typically empirical formulae enabling the mapping of biophysical parameters derived from Earth Observation (EO) data. Due to its empirical nature, it remains nevertheless uncertain to what extent a selected regression model is the most appropriate one, until all band combinations and curve fitting functions are assessed. This paper describes the application of a Spectral Index (SI) assessment toolbox in the Automated Radiative Transfer Models Operator (ARTMO) package. ARTMO enables semi-automatic retrieval and mapping of biophysical parameters from optical remote sensing observations. The SI toolbox facilitates the assessment of biop…
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
2022
Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at d…
Global sensitivity analysis of the A-SCOPE model in support of future FLEX fluorescence retrievals
2014
In support of ESA's Earth Explorer 8 candidate mission FLEX (FLuorescence EXplorer), a Photosynthesis Study has been initiated to quantitatively link fluorescence to photosynthesis. This led to the development of A-SCOPE, a graphical user interface software package that integrates multiple biochemical models into the soil-vegetation-atmosphere-transfer model SCOPE. Its latest version (v1.53) has been successfully verified and was subsequently evaluated through a global sensitivity analysis. By using the method of Saltelli [4], the relative importance of each input variable to model outputs was quantified through first order and total effect sensitivity indices. Variations in leaf area index…
Green roofs for smart cities: experimental determination of the “fractional vegetation coverage” of six vegetated species
2015
Towards a de-carbonization of European countries, green roofs are becoming popular, due not only to aesthetic reasons but also to energy and environmental issues. Indeed, especially in summer periods, the building cooling demand might be sensibly cut thanks to such passive components often chosen for planning smart cities. To properly model the energy performances of buildings equipped with these components, a particular attention must be paid to radiative exchanges occurring among soil surface, leaves and outdoor surroundings. These thermal exchanges depend on parameters, like the “fractional vegetation coverage” whose literature data do not seem particularly suitable for the simulation ne…
Mapping Leaf Area Index with a Smartphone and Gaussian Processes
2020
Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies. Smartphones are nowadays ubiquitous sensor devices with high computational power, moderate cost, and high-quality sensors. A smartphone app, which is called PocketLAI, was recently presented and tested for acquiring ground LAI estimates. In this letter, we explore the use of state-of-the-art nonlinear Gaussian process regression (GPR) to derive spatially explicit LAI estimates over rice using ground data from PocketLAI and Landsat 8 imagery. GPR has gained popularity in recent years because of its solid Bayesian foundations that offer not only high accuracy but also…
A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems
2013
Abstract Leaf area index (LAI) is a key biophysical parameter for the monitoring of agroecosystems. Conventional two-band vegetation indices based on red and near-infrared relationships such as the normalized difference vegetation index (NDVI) are well known to suffer from saturation at moderate-to-high LAI values (3–5). To bypass this saturation effect, in this work a robust alternative has been proposed for the estimation of green LAI over a wide variety of crop types. By using data from European Space Agency (ESA) campaigns SPARC 2003 and 2004 (Barrax, Spain) experimental LAI values over 9 different crop types have been collected while at the same time spaceborne imagery have been acquir…
A directional spectral mixture analysis method: application to multiangular airborne measurements
2006
This study aims at developing an operational approach-namely, directional spectral mixture analysis (DISMA)-for retrieving vegetation parameters like fractional vegetation cover (FVC) and leaf area index (LAI) from multispectral and multiangular data. The approach attempts to highlight the consistency of one-dimensional models and linear mixture approaches. DISMA combines spectral signatures of soil and vegetation components with an analytical approximation of the radiative transfer equation, giving rise to a fast invertible bidirectional reflectance distribution function (BRDF) model of discontinuous canopies. Both the forward model and its inversion using a simple technique based on looku…