Search results for "Lempel-Ziv"

showing 5 items of 5 documents

Adaptive learning of compressible strings

2020

Suppose an oracle knows a string $S$ that is unknown to us and that we want to determine. The oracle can answer queries of the form "Is $s$ a substring of $S$?". In 1995, Skiena and Sundaram showed that, in the worst case, any algorithm needs to ask the oracle $\sigma n/4 -O(n)$ queries in order to be able to reconstruct the hidden string, where $\sigma$ is the size of the alphabet of $S$ and $n$ its length, and gave an algorithm that spends $(\sigma-1)n+O(\sigma \sqrt{n})$ queries to reconstruct $S$. The main contribution of our paper is to improve the above upper-bound in the context where the string is compressible. We first present a universal algorithm that, given a (computable) compre…

FOS: Computer and information sciencesCentroid decompositionGeneral Computer ScienceString compressionAdaptive learningKolmogorov complexityContext (language use)Data_CODINGANDINFORMATIONTHEORYString reconstructionTheoretical Computer ScienceCombinatoricsString reconstruction; String learning; Adaptive learning; Kolmogorov complexity; String compression; Lempel-Ziv; Centroid decomposition; Suffix treeSuffix treeIntegerComputer Science - Data Structures and AlgorithmsOrder (group theory)Data Structures and Algorithms (cs.DS)Adaptive learning; Centroid decomposition; Kolmogorov complexity; Lempel-Ziv; String compression; String learning; String reconstruction; Suffix treeTime complexityComputer Science::DatabasesMathematicsLempel-ZivSettore INF/01 - InformaticaLinear spaceString (computer science)SubstringBounded functionString learningTheoretical Computer Science
researchProduct

Factorizations of the Fibonacci Infinite Word

2015

The aim of this note is to survey the factorizations of the Fibonacci infinite word that make use of the Fibonacci words and other related words, and to show that all these factorizations can be easily derived in sequence starting from elementary properties of the Fibonacci numbers.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Crochemore factorizationComputer Science - Formal Languages and Automata Theory68R15Fibonacci wordLempel-Ziv factorizationLyndon factorizationFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsZeckendorf representationCrochemore factorization; Fibonacci word; Lempel-Ziv factorization; Lyndon factorization; Zeckendorf representation; Discrete Mathematics and CombinatoricsCombinatorics (math.CO)Computer Science - Discrete Mathematics
researchProduct

String attractors and combinatorics on words

2019

The notion of \emph{string attractor} has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word $w=w[1]w[2]\cdots w[n]$ is a subset $\Gamma$ of the positions $\{1,\ldots,n\}$, such that all distinct factors of $w$ have an occurrence crossing at least one of the elements of $\Gamma$. While finding the smallest string attractor for a word is a NP-complete problem, it has been proved in [Kempa and Prezza, 2018] that dictionary compressors can be interpreted as algorithms approximating the smallest string attractor for a given word. In this paper we explore the noti…

FOS: Computer and information sciencesSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - InformaticaFormal Languages and Automata Theory (cs.FL)De Brujin wordComputer Science - Formal Languages and Automata TheoryBurrows-Wheeler transformString attractorComputer Science - Data Structures and AlgorithmsThue-Morse wordLempel-Ziv encodingBurrows-Wheeler transform; De Brujin word; Lempel-Ziv encoding; Run-length encoding; String attractor; Thue-Morse wordData Structures and Algorithms (cs.DS)Run-length encoding
researchProduct

A combinatorial view on string attractors

2021

Abstract The notion of string attractor has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word w = w 1 w 2 ⋯ w n is a subset Γ of the positions { 1 , … , n } , such that all distinct factors of w have an occurrence crossing at least one of the elements of Γ. In this paper we explore the notion of string attractor by focusing on its combinatorial properties. In particular, we show how the size of the smallest string attractor of a word varies when combinatorial operations are applied and we deduce that such a measure is not monotone. Moreover, we introduce a c…

General Computer ScienceSettore INF/01 - InformaticaString (computer science)de Bruijn word0102 computer and information sciences02 engineering and technologyCharacterization (mathematics)Burrows-Wheeler transform01 natural sciencesMeasure (mathematics)Standard Sturmian wordTheoretical Computer ScienceCombinatoricsConjugacy classMonotone polygonString attractor010201 computation theory & mathematicsAttractorThue-Morse word0202 electrical engineering electronic engineering information engineeringLempel-Ziv encoding020201 artificial intelligence & image processingWord (group theory)Mathematics
researchProduct

Boosting Textual Compression in Optimal Linear Time

2005

We provide a general boosting technique for Textual Data Compression. Qualitatively, it takes a good compression algorithm and turns it into an algorithm with a better compression performance guarantee. It displays the following remarkable properties: (a) it can turn any memoryless compressor into a compression algorithm that uses the “best possible” contexts; (b) it is very simple and optimal in terms of time; and (c) it admits a decompression algorithm again optimal in time. To the best of our knowledge, this is the first boosting technique displaying these properties.Technically, our boosting technique builds upon three main ingredients: the Burrows--Wheeler Transform, the Suffix Tree d…

Theoretical computer scienceBurrows–Wheeler transformSuffix treeString (computer science)Data_CODINGANDINFORMATIONTHEORYBurrows-Wheeler transformSubstringArithmetic codinglaw.inventionLempel-Ziv compressorsArtificial IntelligenceHardware and ArchitectureControl and Systems Engineeringlawtext compressionempirical entropyArithmetic codingGreedy algorithmTime complexityAlgorithmSoftwareInformation SystemsMathematicsData compression
researchProduct