Search results for "Leptogenesis"
showing 10 items of 57 documents
2015
Objective Dopamine is an endogenous neuromodulator in cortical circuits and the basal ganglia. In animal models of temporal lobe epilepsy (TLE), seizure threshold is modulated to some extent by dopamine, with D1-receptors having a pro- and D2-receptors an anticonvulsant effect. We aimed to extend our previously reported results on decreased D2/D3 receptor binding in the lateral epileptogenic temporal lobe and to correlate them with demographic and seizure variables to gain a more comprehensive understanding of the underlying involvement of the dopaminergic system in the epileptogenesis of TLE. Methods To quantify D2/D3 receptor binding, we studied 21 patients with TLE and hippocampal sclero…
Role(s) of the 5-HT2C receptor in the development of maximal dentate activation in the hippocampus of anesthetized rats.
2014
Aims: Substantial evidence indicates that 5-HT2C receptors are involved in the control of neuronal network excitability and in seizure pathophysiology. Here, we have addressed the relatively unexplored relationship between temporal lobe epilepsy (TLE), the most frequent type of intractable epilepsy, and 5-HT2CRs. Methods: In this study, we investigated this issue using a model of partial complex (limbic) seizures in urethane-anesthetized rat, based on the phenomenon of maximal dentate activation (MDA) using 5-HT2C compounds, electrophysiology, immunohistochemistry, and western blotting techniques. Results: The 5-HT2C agonists mCPP (1 mg/kg, i.p) and lorcaserin (3 mg/kg, i.p), but not RO60-0…
Standard and non-standard neutrino properties
2002
I review the interpretation of solar and atmospheric neutrino data in terms neutrino oscillations and describe some ways to account for the required neutrino masses and mixing angles from first principles, both within top-down and bottom-up approaches. I also discuss non-oscillation phenomena such as nu-less double beta which may probe the absolute scale of neutrino mass, and also reveal its Majorana nature. I note that leptonic CP violation induced by ``Majorana'' phases drop from oscillations but play a role in the leptogenesis scenario for the baryon asymmetry of the Universe. Direct tests of leptonic CP violation in oscillation experiments, such as neutrino factories, will be a tough ch…
Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic Phenomena
2020
AbstractExtensive researches have deepened knowledge on the role of synaptic components in epileptogenesis, but limited attention has been devoted to the potential implication of the cytoskeleton. The study of the development of epilepsy and hyperexcitability states involves molecular, synaptic, and structural alterations of neuronal bioelectric activity. In this paper we aim to explore the neurobiological targets involved in microtubule functioning and cytoskeletal transport, i.e. how dynamic scaffolding of microtubules can influence neuronal morphology and excitability, in order to suggest a potential role for microtubule dynamics in the processes turning a normal neuronal network in a hy…
Falsifying high-scale baryogenesis with neutrinoless double beta decay and lepton flavor violation
2015
5 pages.- 2 figures
Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson
2007
15 pages, 3 figures.-- ISI Article Identifier: 000250759700079.-- ArXiv pre-print available at: http://arxiv.org/abs/0707.3999
Flavored CP asymmetries for type II seesaw leptogenesis
2013
A novel contribution to the leptonic CP asymmetries in type II seesaw leptogenesis scenarios is obtained for the cases in which flavor effects are relevant for the dynamics of leptogenesis. In the so-called flavored leptogenesis regime, the interference between the tree-level amplitude of the scalar triplet decaying into two leptons and the one-loop wave function correction with leptons in the loop, leads to a new nonvanishing CP asymmetry contribution. The latter conserves total lepton number but violates lepton flavor. Cases in which this novel contribution may be dominant in the generation of the baryon asymmetry are briefly discussed.
Chern-Simons anomaly as polarization effect
2011
The parity violating Chern-Simons term in the epoch before the electroweak phase transition can be interpreted as a polarization effect associated to massless right-handed electrons (positrons) in the presence of a large-scale seed hypermagnetic field. We reconfirm the viability of a unified seed field scenario relating the cosmological baryon asymmetry and the origin of the protogalactic large-scale magnetic fields observed in astronomy.
Leptogenesis from oscillations and dark matter
2019
An extension of the Standard Model with Majorana singlet fermions in the 1–100 GeV range can explain the light neutrino masses and give rise to a baryon asymmetry at freeze-in of the heavy states, via their CP-violating oscillations. In this paper we consider extending this scenario to also explain dark matter. We find that a very weakly coupled B−L gauge boson, an invisible QCD axion model, and the singlet majoron model can simultaneously account for dark matter and the baryon asymmetry.
On baryogenesis from dark matter annihilation
2013
We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.