Search results for "LiDAR"

showing 10 items of 475 documents

ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO

2017

Abstract The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combi…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologysatellitecontrail cirruscirrus010501 environmental sciences01 natural sciencesmodellingML-CIRRUSRange (aeronautics)ddc:550Wolkenphysik0105 earth and related environmental sciencesLidarFernerkundung der AtmosphäreVerkehrsmeteorologieAtmosphärische SpurenstoffeTrace gasAerosolLidarMiddle latitudesHALOEnvironmental scienceCirrusSatelliteHaloaircraft measurementsBulletin of the American Meteorological Society
researchProduct

Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter

2021

This paper presents measurements of mineral dust concentration in the diameter range from 0.4 to 14.0 µm with a novel balloon-borne optical particle counter, the Universal Cloud and Aerosol Sounding System (UCASS). The balloon launches were coordinated with ground-based active and passive remote-sensing observations and airborne in situ measurements with a research aircraft during a Saharan dust outbreak over Cyprus from 20 to 23 April 2017. The aerosol optical depth at 500 nm reached values up to 0.5 during that event over Cyprus, and particle number concentrations were as high as 50 cm−3 for the diameter range between 0.8 and 13.9 µm. Comparisons of the total particle number concentration…

Atmospheric Science010504 meteorology & atmospheric sciencesParticle numberPhysicsQC1-9990208 environmental biotechnology02 engineering and technologyMineral dustMolar absorptivityAtmospheric sciences01 natural sciences020801 environmental engineeringAerosolSun photometerChemistryLidar13. Climate actionParticle-size distributionEnvironmental scienceParticle counterQD1-9990105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals

2021

The Prede POM sky radiometer is a filter radiometer deployed worldwide in the SKYNET international network. A new method, called Skyrad pack MRI version 2 (MRI v2), is presented here to retrieve aerosol properties (size distribution, real and imaginary parts of the refractive index, single-scattering albedo, asymmetry factor, lidar ratio, and linear depolarization ratio), water vapor, and ozone column concentrations from the sky radiometer measurements. MRI v2 overcomes two limitations of previous methods (Skyrad pack versions 4.2 and 5, MRI version 1). One is the use of all the wavelengths of 315, 340, 380, 400, 500, 675, 870, 940, 1020, 1627, and 2200 nm if available from the sky radiomet…

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolEnvironmental engineering01 natural sciencesCape verde03 medical and health sciencesEarthwork. FoundationsRadiative transferretrievalZenith030304 developmental biology0105 earth and related environmental sciencesRemote sensing0303 health sciencesRadiometerTA715-787TA170-171AlbedoAerosolwater vapourozonesky radiometerLidarAlmucantarradiative transferEnvironmental scienceAtmospheric Measurement Techniques
researchProduct

The challenge of simulating the sensitivity of the Amazonian clouds microstructure to cloud condensation nuclei number concentrations

2019

The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ …

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolNuclear TheoryCloud computingAtmospheric sciences01 natural scienceslcsh:ChemistryCloud base0103 physical sciencesddc:550Cloud condensation nucleicloudPrecipitationmicrophysicsWolkenphysikNuclear Experiment010303 astronomy & astrophysicsPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEffective radiusCondensed Matter::Quantum Gasescloud condenstion nucleiLidarbusiness.industryCondensed Matter::Otherlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceClimate modelbusinessGlobal Precipitation Measurementlcsh:Physics
researchProduct

Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolut…

2017

Abstract. Two mountain wave events, which occurred over northern Scandinavia in December 2013 are analysed by means of airborne observations and global and mesoscale numerical simulations with horizontal mesh sizes of 16, 7.2, 2.4 and 0.8 km. During both events westerly cross-mountain flow induced upward-propagating mountain waves with different wave characteristics due to differing atmospheric background conditions. While wave breaking occurred at altitudes between 25 and 30 km during the first event due to weak stratospheric winds, waves propagated to altitudes above 30 km and interfacial waves formed in the troposphere at a stratospheric intrusion layer during the second event. Global an…

Atmospheric Science010504 meteorology & atmospheric sciencesairborne observationsFlow (psychology)Mesoscale meteorologygravity waves010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesPhysics::GeophysicsTropospherelcsh:ChemistryGW-LCYCLE IPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesMomentum (technical analysis)Institut für Physik der AtmosphäreLidarTurbulent diffusionVerkehrsmeteorologieBreaking wavelcsh:QC1-999WavelengthAmplitudenumerical modelinglcsh:QD1-999Geologylcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Microphysical and optical properties of Arctic mixed-phase clouds. The 9 April 2007 case study.

2009

Abstract. Airborne measurements in Arctic boundary-layer stratocumulus were carried out near Spitsbergen on 9 April 2007 during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign. A unique set of co-located observations is used to describe the cloud properties, including detailed in situ cloud microphysical and radiation measurements along with airborne and co-located spaceborne remote sensing data (Lidar on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO] and radar on CloudSat satellites). The CALIPSO profiles evidence a cloud top temperature which varies between −24°C and −21°C. The in situ cloud observations reveal that the attenua…

Atmospheric ScienceASTARArktische Grenzschicht010504 meteorology & atmospheric sciencesBackscatterCloud coverCALIPSOMischphasenwolken010502 geochemistry & geophysicsAtmospheric sciences01 natural sciences010309 opticslcsh:Chemistry0103 physical sciencesPrecipitation0105 earth and related environmental sciencesLidarIce crystalsCloud toplcsh:QC1-999Lidarlcsh:QD1-999Arctic13. Climate actionExtinction (optical mineralogy)Environmental sciencelcsh:PhysicsWolkenphysik und VerkehrsmeteorologieAtmospheric Chemistry and Physics
researchProduct

Lidar characterization of the Arctic atmosphere during ASTAR 2007: Four cases studies of boundary layer, mixed-phase and multi-layer clouds

2010

During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR), which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar) and with an airborne elastic lidar. In the time period of the ASTAR 2007 campaign, an increase in low-level cloud cover (cloud tops below 2.5 km) from 51% to 65% was observed above Ny-Ålesund. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a layer of spherical particles was observed at an altitude of 2 km after the dissolution of a cloud. The layer probably consisted of small h…

Atmospheric ScienceASTARArktische Grenzschicht010504 meteorology & atmospheric sciencesCloud coverMischphasenwolkenAtmospheric sciences01 natural scienceslcsh:Chemistry010309 opticsAtmosphereTroposphere0103 physical sciences0105 earth and related environmental sciencesRemote sensingLidarCloud topOrographylcsh:QC1-999Boundary layerLidarlcsh:QD1-999Arctic13. Climate actionEnvironmental sciencelcsh:PhysicsWolkenphysik und Verkehrsmeteorologie
researchProduct

Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere

2014

Abstract. Nitric acid trihydrate (NAT) particles in the polar stratosphere have been shown to be responsible for vertical redistribution of reactive nitrogen (NOy). Recent observations by Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the CALIPSO satellite have been explained in terms of heterogeneous nucleation of NAT on foreign nuclei, revealing this to be an important formation pathway for the NAT particles. In state of the art global- or regional-scale models, heterogeneous NAT nucleation is currently simulated in a very coarse manner using a constant, saturation-independent nucleation rate. Here we present first simulations for the Arctic winter 2009/2010 applying a n…

Atmospheric ScienceDenitrification010504 meteorology & atmospheric sciencesForward scatterNucleationAtmospheric sciences01 natural sciences010309 opticslcsh:Chemistry0103 physical sciencesddc:550Life ScienceStratosphere0105 earth and related environmental sciencesSpectrometerozone holeChemistryAtmosphärische Spurenstoffelcsh:QC1-999Earth sciencesLidarnitric acid trihydratelcsh:QD1-99913. Climate actionPolarParticle sizelcsh:PhysicsArctic stratosphere
researchProduct

EARLINET observations of the 14-22-may long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling

2009

We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Ångstr¨om exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dus…

Atmospheric ScienceEnvironmental EngineeringAerosol Robotic Network (AERONET)010504 meteorology & atmospheric sciencesMeteorologySaharan dustAEROSOL OPTICAL-PROPERTIES010501 environmental sciencesMineral dust01 natural sciencesMineral dustSun photometerLIDARSouth EuropeSKY RADIANCE MEASUREMENTSNETWORKAerosolOptical depth0105 earth and related environmental sciencesOptical propertiesEuropean Aerosol Research Lidar Network (EARLINET)Geometrical propertiesAtmosphärische SpurenstoffeDustNorth AfricaAerosolAERONETPlumeSAMUMLidarEnvironmental scienceAeolian processesEngineering and TechnologyDust aerosolsSaharan Mineral Dust Experiment (SAMUM)Sun photometersAERONET
researchProduct

Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning

2009

In recent years, LIDAR (light detection and ranging) sensors have been widely used to measure environmental parameters such as the structural characteristics of trees, crops and forests. Knowledge of the structural characteristics of plants has a high scientific value due to their influence in many biophysical processes including, photosynthesis, growth, CO2-sequestration and evapotranspiration, playing a key role in the exchange of matter and energy between plants and the atmosphere, and affecting terrestrial, above-ground, carbon storage. In this work, we report the use of a 2D LIDAR scanner in agriculture to obtain three-dimensional (3D) structural characteristics of plants. LIDAR allows…

Atmospheric ScienceGlobal and Planetary ChangeCorrelation coefficientForestryVegetationOptical radarRadar òpticTree volumeFotogrametria aèriaArbresTerrestrial LIDARTree (data structure)Lidar:Enginyeria agroalimentària::Ciències forestals [Àrees temàtiques de la UPC]Evapotranspiration3D Plant structureEnvironmental scienceOrchardLeaf area indexAgronomy and Crop ScienceLaser measurementsRemote sensingWoody plant
researchProduct