Search results for "Lindelof"
showing 10 items of 12 documents
A note on rank 2 diagonals
2020
<p>We solve two questions regarding spaces with a (G<sub>δ</sub>)-diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G<sub>δ</sub>-diagonal of rank 2 and the other is a question of Arhangel’skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.</p>
Gδ covers of compact spaces
2018
We solve a long standing question due to Arhangel'skii by constructing a compact space which has a Gδ cover with no continuum-sized (Gδ)-dense subcollection. We also prove that in a countably compact weakly Lindelöf normal space of countable tightness, every Gδ cover has a -sized subcollection with a Gδ-dense union and that in a Lindelöf space with a base of multiplicity continuum, every Gδ cover has a continuum sized subcover. We finally apply our results to obtain a bound on the cardinality of homogeneous spaces which refines De La Vega's celebrated theorem on the cardinality of homogeneous compacta of countable tightness.
A new class of spaces with all finite powers Lindelof
2013
We consider a new class of open covers and classes of spaces defined from them, called "iota spaces". We explore their relationship with epsilon-spaces (that is, spaces having all finite powers Lindelof) and countable network weight. An example of a hereditarily epsilon-space whose square is not hereditarily Lindelof is provided.
A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality
2019
AbstractWe present a result about $G_{\unicode[STIX]{x1D6FF}}$ covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X|\leqslant 2^{L(X)\unicode[STIX]{x1D712}(X)}$ (Arhangel’skiĭ) and $|X|\leqslant 2^{c(X)\unicode[STIX]{x1D712}(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel’s survey on Arhangel’skiĭ’s Theorem (R. Hodel, Arhangel’skii’s so…
Free sequences and the tightness of pseudoradial spaces
2019
Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .
On closures of discrete sets
2018
The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.
Infinite games and cardinal properties of topological spaces
2015
Inspired by work of Scheepers and Tall, we use properties defined by topological games to provide bounds for the cardinality of topological spaces. We obtain a partial answer to an old question of Bell, Ginsburg and Woods regarding the cardinality of weakly Lindel¨of first-countable regular spaces and answer a question recently asked by Babinkostova, Pansera and Scheepers. In the second part of the paper we study a game-theoretic version of cellularity, a special case of which has been introduced by Aurichi. We obtain a game-theoretic proof of Shapirovskii’s bound for the number of regular open sets in an (almost) regular space and give a partial answer to a natural question about the produ…
Countably compact weakly Whyburn spaces
2015
The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set \({A \subset X}\) there is a subset \({B \subset A}\) such that \({\overline{B} \setminus A}\) is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communica…
P-spaces and the Whyburn property
2009
We investigate the Whyburn and weakly Whyburn property in the class of $P$-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn $P$-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (a set-theoretic assumption weaker than CH) implies the existence of a non-weakly Whyburn $P$-space of size $\aleph_2$. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindel\"of weakly Whyburn P-space and a Lindel\"of Whyburn $P$-space is we…
Cardinal Invariants for the $G_\delta$ topology
2017
We prove upper bounds for the spread, the Lindel\"of number and the weak Lindel\"of number of the $G_\delta$-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juh\'asz and van Mill regarding the cardinality of a $\sigma$-countably tight homogeneous compactum.