Search results for "Linear Algebra."

showing 10 items of 552 documents

On a linear diophantine problem of Frobenius

1993

Abstract In this paper, linear diophantine problem of Frobenius is discussed. A theorem concerning the largest integer g m (a1,a2) and the smallest integer G m (a1,a2) with m different representations with a1,a2 as basis is proved.

Discrete mathematicsBasis (linear algebra)Diophantine equationElectrical and Electronic EngineeringSafety Risk Reliability and QualityCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsInteger (computer science)MathematicsMicroelectronics Reliability
researchProduct

Querying the Guarded Fragment with Transitivity

2016

We study the problem of answering a union of Boolean conjunctive queries q against a database Δ, and a logical theory φ which falls in the guarded fragment with transitive guards (GF + TG). We trace the frontier between decidability and undecidability of the problem under consideration. Surprisingly, we show that query answering under GF2 + TG, i.e., the two-variable fragment of GF + TG, is already undecidable (even without equality), whereas its monadic fragment is decidable; in fact, it is 2exptime-complete in combined complexity and coNP-complete in data complexity. We also show that for a restricted class of queries, query answering under GF+TG is decidable. © 2013 Springer-Verlag.

Discrete mathematicsClass (set theory)Transitive relationTrace (linear algebra)0102 computer and information sciences02 engineering and technology16. Peace & justice01 natural sciencesDecidabilityUndecidable problemTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDescription logicFragment (logic)010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingConjunctive queryMathematicsAutomata, Languages, and Programming
researchProduct

Basis-set completeness profiles in two dimensions

2002

A two-electron basis-set completeness profile is proposed by analogy with the one-electron profile introduced by D. P. Chong (Can J Chem 1995, 73, 79). It is defined as Y(alpha, beta) = sigmam sigman (Galpha(1)Gbeta(2)/(1/r12)/ psim(1)psin(2)) (psim(1)psin(2)/r12/Galpha(1)Gp(2)) and motivated by the expression for the basis-set truncation correction that occurs in the framework of explicitly correlated methods (Galpha is a scanning Gaussian-type orbital of exponent alpha and [psim] is the orthonormalized one-electron basis under study). The two-electron basis-set profiles provide a visual assessment of the suitability of basis sets to describe electron-correlation effects. Furthermore, they…

Discrete mathematicsComputational MathematicsAngular momentumBasis (linear algebra)TruncationCompleteness (order theory)ExponentGeneral ChemistryExpression (computer science)Linear subspaceBasis setMathematicsJournal of Computational Chemistry
researchProduct

Defining relations of minimal degree of the trace algebra of 3×3 matrices

2008

Abstract The trace algebra C n d over a field of characteristic 0 is generated by all traces of products of d generic n × n matrices, n , d ⩾ 2 . Minimal sets of generators of C n d are known for n = 2 and n = 3 for any d as well as for n = 4 and n = 5 and d = 2 . The defining relations between the generators are found for n = 2 and any d and for n = 3 , d = 2 only. Starting with the generating set of C 3 d given by Abeasis and Pittaluga in 1989, we have shown that the minimal degree of the set of defining relations of C 3 d is equal to 7 for any d ⩾ 3 . We have determined all relations of minimal degree. For d = 3 we have also found the defining relations of degree 8. The proofs are based …

Discrete mathematicsDefining relationsTrace algebrasAlgebra and Number TheoryTrace (linear algebra)Degree (graph theory)Matrix invariantsGeneral linear groupField (mathematics)Representation theoryCombinatoricsSet (abstract data type)AlgebraGeneric matricesInvariants of tensorsGenerating set of a groupMathematicsJournal of Algebra
researchProduct

The Alternating BWT: an algorithmic perspective

2020

Abstract The Burrows-Wheeler Transform (BWT) is a word transformation introduced in 1994 for Data Compression. It has become a fundamental tool for designing self-indexing data structures, with important applications in several areas in science and engineering. The Alternating Burrows-Wheeler Transform (ABWT) is another transformation recently introduced in Gessel et al. (2012) [21] and studied in the field of Combinatorics on Words. It is analogous to the BWT, except that it uses an alternating lexicographical order instead of the usual one. Building on results in Giancarlo et al. (2018) [23] , where we have shown that BWT and ABWT are part of a larger class of reversible transformations, …

Discrete mathematicsFOS: Computer and information sciencesSettore INF/01 - InformaticaGeneral Computer ScienceBasis (linear algebra)Computer scienceAlternating Burrows-Wheeler TransformGalois wordRank-invertibilityField (mathematics)Data structureTheoretical Computer ScienceTransformation (function)Difference cover algorithmComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)Time complexityAlternating Burrows-Wheeler Transform; Difference cover algorithm; Galois word; Rank-invertibilityWord (computer architecture)Data compression
researchProduct

Minimal varieties of algebras of exponential growth

2003

Abstract The exponent of a variety of algebras over a field of characteristic zero has been recently proved to be an integer. Through this scale we can now classify all minimal varieties of given exponent and of finite basic rank. As a consequence, we describe the corresponding T-ideals of the free algebra and we compute the asymptotics of the related codimension sequences, verifying in this setting some known conjectures. We also show that the number of these minimal varieties is finite for any given exponent. We finally point out some relations between the exponent of a variety and the Gelfand–Kirillov dimension of the corresponding relatively free algebras of finite rank.

Discrete mathematicsMathematics(all)Pure mathematicsRank (linear algebra)General MathematicsMathematical analysisZero (complex analysis)Field (mathematics)CodimensionIntegerFree algebraExponentVariety (universal algebra)MathematicsElectronic Research Announcements of the American Mathematical Society
researchProduct

A space of projections on the Bergman space

2010

We define a set of projections on the Bergman space A 2 , which is parameterized by an ane subset of a Banach space of holomorphic functions in the disk and which includes the classical Forelli-Rudin projections.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsMathematics::Complex VariablesGeneral MathematicsInfinite-dimensional vector functionHolomorphic functionBanach spaceMathematics::General TopologyQuotient space (linear algebra)Continuous functions on a compact Hausdorff spaceBergman spaceBesov spaceBergman kernelMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Unconditional Basis and Gordon–Lewis Constants for Spaces of Polynomials

2001

Abstract No infinite dimensional Banach space X is known which has the property that for m ⩾2 the Banach space of all continuous m -homogeneous polynomials on X has an unconditional basis. Following a program originally initiated by Gordon and Lewis we study unconditionality in spaces of m -homogeneous polynomials and symmetric tensor products of order m in Banach spaces. We show that for each Banach space X which has a dual with an unconditional basis ( x * i ), the approximable (nuclear) m -homogeneous polynomials on X have an unconditional basis if and only if the monomial basis with respect to ( x * i ) is unconditional. Moreover, we determine an asymptotically correct estimate for the …

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsPolynomialBanach spacepolynomialBasis (linear algebra)Banach spaceMonomial basisunconditional basisUnconditional convergenceOrder (group theory)Interpolation spaceSymmetric tensorsymmetric tensor productGordon–Lewis propertyAnalysisMathematicsJournal of Functional Analysis
researchProduct

Rank structured approximation method for quasi--periodic elliptic problems

2016

We consider an iteration method for solving an elliptic type boundary value problem $\mathcal{A} u=f$, where a positive definite operator $\mathcal{A}$ is generated by a quasi--periodic structure with rapidly changing coefficients (typical period is characterized by a small parameter $\epsilon$) . The method is based on using a simpler operator $\mathcal{A}_0$ (inversion of $\mathcal{A}_0$ is much simpler than inversion of $\mathcal{A}$), which can be viewed as a preconditioner for $\mathcal{A}$. We prove contraction of the iteration method and establish explicit estimates of the contraction factor $q$. Certainly the value of $q$ depends on the difference between $\mathcal{A}$ and $\mathcal…

Discrete mathematicsNumerical AnalysisRank (linear algebra)PreconditionerApplied Mathematicsprecondition methodsguaranteed error boundsOrder (ring theory)65F30 65F50 65N35 65F10tensor type methods010103 numerical & computational mathematicsNumerical Analysis (math.NA)elliptic problems with periodic and quasi-periodic coefficients01 natural sciencesFinite element method010101 applied mathematicsComputational MathematicsOperator (computer programming)Simple (abstract algebra)FOS: MathematicsBoundary value problemTensorMathematics - Numerical Analysis0101 mathematicsMathematics
researchProduct

Scalable Ellipsoidal Classification for Bipartite Quantum States

2008

The Separability Problem is approached from the perspective of Ellipsoidal Classification. A Density Operator of dimension N can be represented as a vector in a real vector space of dimension $N^{2}- 1$, whose components are the projections of the matrix onto some selected basis. We suggest a method to test separability, based on successive optimization programs. First, we find the Minimum Volume Covering Ellipsoid that encloses a particular set of properly vectorized bipartite separable states, and then we compute the Euclidean distance of an arbitrary vectorized bipartite Density Operator to this ellipsoid. If the vectorized Density Operator falls inside the ellipsoid, it is regarded as s…

Discrete mathematicsPhysicsQuantum PhysicsBasis (linear algebra)Operator (physics)FOS: Physical sciencesEllipsoidAtomic and Molecular Physics and OpticsSeparable spaceEuclidean distanceSeparable stateDimension (vector space)Quantum mechanicsBipartite graphQuantum Physics (quant-ph)
researchProduct