Search results for "Linear Energy Transfer"

showing 8 items of 18 documents

Condensation of classical optical waves beyond the cubic nonlinear Schrodinger equation

2012

International audience; A completely classical nonlinear wave is known to exhibit a process of condensation whose thermodynamic properties are analogous to those of the genuine Bose-Einstein condensation. So far this phenomenon of wave condensation has been studied essentially in the framework of the nonlinear Schrodinger (NLS) equation with a pure cubic Kerr nonlinearity. We study wave condensation by considering two representative generalizations of the NLS equation that are relevant to the context of nonlinear optics, the nonlocal nonlinearity and the saturable nonlinearity. For both cases we derive analytical expressions of the condensate fraction in the weakly and the strongly nonlinea…

POLARIZATIONPROPAGATION01 natural sciences010305 fluids & plasmaslaw.inventionsymbols.namesakeLINEAR ENERGY TRANSFERlawQuantum mechanics0103 physical sciencesBOSE-EINSTEIN CONDENSATIONElectrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsPhysicsCondensed Matter::Quantum GasesINCOHERENT-LIGHTSPECTRUMAnalytical expressionsTurbulenceNonlinear opticsPolarization (waves)THERMALIZATIONAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsRAMAN FIBER LASERMODELNonlinear systemClassical mechanicsThermalisationsymbolsTURBULENCEBose–Einstein condensate
researchProduct

Energy loss measurement of protons in liquid water

2011

The proton stopping power of liquid water was, for the first time, measured in the energy range 4.7-15.2 MeV. The proton energies were determined by the time-of-flight transmission technique with the microchannel plate detectors, which were especially developed for timing applications. The results are compared to the literature values (from ICRU Report 49 (1993) and Janni's tabulation (1982 At. Data Nucl. Data Tables 27 147-339)) which are based on Bethe's formula and an agreement is found within the experimental uncertainty of 4.6%. Thus, earlier reported discrepancy between the experimental and literature stopping power values at lower energies was not observed at the energies considered …

PhysicsRange (particle radiation)Energy lossTime FactorsRadiological and Ultrasound TechnologyProtonLiquid waterDetectorWaterNuclear physicsExperimental uncertainty analysisSolventsStopping power (particle radiation)Computer SimulationLinear Energy TransferRadiology Nuclear Medicine and imagingMicrochannel plate detectorProtonsAtomic physicsRadiometryPhysics in Medicine and Biology
researchProduct

Analysis of the spatial distribution of free radicals in ammonium tartrate by pulse EPR techniques

2009

Using pulse electron paramagnetic resonance (EPR) on a series of l(+)-ammonium tartrate (AT) dosimeters exposed to radiations with different linear energy transfer (LET), we assessed the ability of pulse EPR spectroscopy to discriminate the quality of various radiation beams such as (60)Co gamma-ray photons, protons and thermal neutrons at various doses by analyzing the local radical distributions produced by the different beams. We performed two types of pulse EPR investigations: two-pulse electron spin echo decay obtained by varying the microwave power, and a double electron-electron resonance (DEER) study. Both methods provide information about the dipolar interactions among the free rad…

Free RadicalsBiophysicsAnalytical chemistryradical distribution; radiation dosimetry; ESR spectroscopyLinear energy transferElectronsRadiationTartrateRadiation Dosagelaw.inventionDiffusionchemistry.chemical_compoundlawAmmonium Tartrate by Pulse EPR TechniquesRadiology Nuclear Medicine and imagingCobalt RadioisotopesRadiometrySpectroscopyElectron paramagnetic resonanceTartratesNeutronsRadiationPulsed EPRElectron Spin Resonance SpectroscopyResonanceESR spectroscopyNeutron temperatureradiation dosimetrychemistryGamma Raysradical distributionProtons
researchProduct

Power saturation of ESR signal in ammonium tartrate exposed to 60Co gamma-ray photons, electrons and protons.

2006

Abstract Marrale, M., Brai, M., Triolo, A., Bartolotta, A. and D'Oca, M. C. Power Saturation of ESR Signal in Ammonium Tartrate Exposed to 60Co γ-Ray Photons, Electrons and Protons. Radiat. Res. 166, 802–809 (2006). In this paper we present an investigation of the electron spin resonance (ESR) line shape of ammonium tartrate (AT) dosimeters exposed to radiation with different linear energy transfer (LET). We exposed our dosimeters to γ-ray photons (60Co), 7 MeV and 14 MeV initial energy electrons, and 19.3 MeV initial energy protons. The differences in the power saturation behavior of ESR spectra of AT irradiated with photons, electrons and protons could be correlated to the effective LET o…

PhotonBiophysicsLinear energy transferElectronsElectronRadiationRadiation DosageSensitivity and Specificitylaw.inventionlawRadiology Nuclear Medicine and imagingLinear Energy TransferIrradiationCobalt RadioisotopesElectron paramagnetic resonanceRadiometrySaturation (magnetic)TartratesPhotonsRadiationDosimeterChemistryElectron Spin Resonance SpectroscopyReproducibility of ResultsDose-Response Relationship RadiationAmmonium Tartrate 60Co -Ray Photons Electrons and Protons.Gamma RaysAtomic physicsProtonsAlgorithmsRadiation research
researchProduct

The Pion Single-Event Latch-Up Cross Section Enhancement: Mechanisms and Consequences for Accelerator Hardness Assurance

2021

Pions make up a large part of the hadronic environment typical of accelerator mixed fields. Characterizing device cross sections against pions is usually disregarded in favor of tests with protons, whose single-event latch-up (SEL) cross section is, nonetheless, experimentally found to be lower than that of pions for all energies below 250 MeV. While Monte Carlo simulations are capable of reproducing such behavior, the reason for the observed pion cross-section enhancement can only be explained by a deeper analysis of the underlying mechanisms dominating proton–silicon and pion–silicon reactions. The mechanisms dominating the SEL response are found to vary with the energy under consideratio…

PhysicsNuclear reactionNuclear and High Energy PhysicsMesonNuclear TheoryMonte Carlo methodHadronLinear energy transfer02 engineering and technology021001 nanoscience & nanotechnologyAccelerators and Storage Rings01 natural sciences7. Clean energyNuclear physicsCross section (physics)PionNuclear Energy and Engineering0103 physical sciencesNuclear Physics - ExperimentHigh Energy Physics::ExperimentElectrical and Electronic EngineeringNuclear Experiment010306 general physics0210 nano-technologyEvent (particle physics)IEEE Transactions on Nuclear Science
researchProduct

Proton Direct Ionization in Sub-Micron Technologies: Numerical Method for RPP Parameter Extraction

2022

This work introduces a numerical method to iteratively extract parameters of a rectangular parallelepiped (RPP) sensitive volume (SV) from experimental proton direct ionization SEU data. The method combines two separate numerical models. The first model estimates the average LET values for energetic ions, including protons and also heavy ions, in elemental solid targets. The second model describes the statistical variance in the energy deposition events of projectile-induced primary ionization within a RPP shaped target volume. To benchmark the method, simulated cross-section values based on RPP parameters derived with this method are compared with literature data from four SRAM devices. Th…

Nuclear and High Energy Physicssingle event upset (SEU)protonitnumeeriset menetelmätionisoiva säteilyMonte Carlo (MC) methodstragglingMonte Carlo -menetelmätNuclear Energy and Engineeringsäteilyfysiikkarectangular parallelepiped (RPP)proton direct ionization (PDI)Electrical and Electronic Engineeringlinear energy transfer (LET)IEEE Transactions on Nuclear Science
researchProduct

Single- and Double-Strand Breaks of Dry DNA Exposed to Protons at Bragg-Peak Energies

2017

International audience; Ultrathin layers (<20 nm) of pBR322 plasmid DNA were deposited onto 2.5 μm thick polyester films and exposed to proton Bragg-peak energies (90–3000 keV) at various fluences. A quantitative analysis of radio-induced DNA damage is reported here in terms of single- and double-strand breaks (SSB and DSB, respectively). The corresponding yields as well as G-values and the cross sections exhibit fairly good agreement with the rare available data, stemming from close experimental conditions, namely, based on α particle irradiation. SSB/DSB rates appear to be linear when plotted against linear energy transfer (LET) in the whole energy range studied. All the data present a ma…

cross-sectionProtonPolyestersLinear energy transferBragg peak7. Clean energyclustered DNA damage030218 nuclear medicine & medical imagingdamage yield03 medical and health scienceschemistry.chemical_compound0302 clinical medicineFragmentation (mass spectrometry)Materials ChemistryDNA Breaks Double-StrandedLinear Energy TransferDNA Breaks Single-StrandedIrradiationPhysical and Theoretical Chemistryradiochemical yieldDouble strandRange (particle radiation)DNASurfaces Coatings and Films[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]chemistry030220 oncology & carcinogenesis[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]ProtonsAtomic physicsDNAPlasmidsBragg-Peaksingle and double strand breakThe Journal of Physical Chemistry B
researchProduct

An EPR method for discriminating radiation beams in ammonium tartrate and tooth enamel

2008

The radiation linear energy transfer (LET), which is the energy released by ionizing radiation per path unit, arouses great scientific interest because the biological damage produced by ionizing radiation in tissues is strictly related to LET. Radiation beams with different LETs will cause different spatial energy distribution and therefore different effects inside matter. In the last twenty years the EPR spectroscopy has become a valuable dosimetric tool. This technique allows absorbed dose measurements through the detection of free radicals produced by ionizing radiation in organic and/or inorganic compounds. In this work we have analyzed the possibility of using the acquisition of two co…

Materials scienceRenewable Energy Sustainability and the EnvironmentHealth Toxicology and MutagenesisPublic Health Environmental and Occupational HealthLinear energy transferRadiationIonizing radiationlaw.inventionNuclear Energy and EngineeringlawAbsorbed doseDosimetryIrradiationAtomic physicsSafety Risk Reliability and QualityElectron paramagnetic resonanceAbsorption (electromagnetic radiation)Waste Management and DisposalRadioprotection
researchProduct