Search results for "Linear optics"
showing 10 items of 493 documents
An approach to the measurement of the nonlinear refractive index of very short lengths of optical fibers
2018
A method for the measurement of the nonlinear-refractive index coefficient in single-mode optical fibers is presented. It takes advantage of the high sensitivity of the acousto-optic interaction effect in optical fibers to the fiber properties. Direct measurement of the nonlinear-refractive index change resulting from cross-phase modulation between a probe and a pump signal is obtained from the fiber's acousto-optic interaction performance. It is a non-interferometric method in which a very short length of fiber (<0.25 m) is required.
Fiber-based measurement of temporal intensity and phase profiles of an optical telecommunication pulse through self-phase modulation
2018
International audience; We propose and experimentally validate an all-fiber based approach to characterize the phase and intensity profiles of optical pulses. Based on three optical spectra affected by different levels of self-phase modulation, we were able to reconstruct the temporal details of pulses typical of optical telecommunications.
Highly efficient few-mode spatial beam self-cleaning at 15µm
2020
We experimentally demonstrate that spatial beam self-cleaning can be highly efficient when obtained with a few-mode excitation in graded-index multimode optical fibers. By using 160 ps long, highly chirped (6 nm bandwidth at -3dB) optical pulses at 1562 nm, we demonstrate a one-decade reduction of the power threshold for spatial beam self-cleaning, with respect to previous experiments using pulses with laser wavelengths at 1030-1064 nm. Self-cleaned beams remain spatio-temporally stable for more than a decade of their peak power variation. The impact of input pulse temporal duration is also studied.
Simultaneous achievement of polarization attraction and Raman amplification in optical fibers
2004
We present a theoretical analysis and experimental demonstration of the combined effects of polarization attraction and Raman amplification in isotropic optical fibers. The polarization attraction is based on four-wave mixing interaction of counterpropagating waves.
Polarization Modulation Instability in All-Normal Dispersion Microstructured Optical Fibers with sub-ns Pumping
2019
The advent of microstructured optical fiber (MOF) technology gave a significant boost to research in nonlinear optics. MOFs have the advantage of high nonlinearity and designable dispersion, which makes this type of fiber an excellent platform for efficient generation of nonlinear effects. In the last years, MOFs exhibiting normal dispersion at any guiding wavelength (ANDi fibers) aroused the interest because of the possibility of using them for the generation of coherent and recompressible supercontinuum (SC) light. In this contribution, we present our recent results regarding the generation of the polarization modulation instability (PMI) effect in ANDi MOFs in the quasi-CW pump regime at…
Enhanced supercontinuum generation in the nanosecond pump regime using specialty microstructured fibers
2009
Several alternatives have been investigated to achieve enhanced supercontinuum generation in the nanosecond pump regime using specialty silica-based microstructured optical fibers (MOFs). Among these alternatives we can point out the use of (a) MOF tapers, (b) highly Ge-doped core Y-shaped MOF and (c) Er-doped MOF. These specialty MOFs provide either an increased material nonlinear response or a rather small effective area, at the same time that the dispersion characteristics are adjusted to work at different excitation conditions. In our experiments, we have been using either a Q-switched Nd:YAG laser (10 Hz repetition rate) or an Yb-doped fiber laser (2 kHz repetition rate), both emitting…
Grating-assisted third-harmonic generation in photonic crystal fibers using a pulse pump
2011
We demonstrate that quasi-phase-matching of the third-harmonic generation process can be obtained for a pulse pump in the photonic crystal fiber with a refractive-index grating. Conversion efficiency is calculated numerically using a system of coupled generalized nonlinear Schrodinger equations. We propose a special design of the microstructured fiber for the third-harmonic generation and analyze different phenomena limiting the maximum efficiency for short (femtosecond) and long (picosecond) pump pulses. Moreover, we show that a certain level of a group-velocity mismatch between the pump and the third harmonic can increase the maximum efficiency in the long pulse regime.
Broadband tuning of polarization modulation instability in microstructured optical fibers
2020
The wideband tuning of strong bands generated through polarization modulation instability (PMI) in microstructured optical fibers (MOFs) is reported. Tunability is achieved by exploiting the dependence of the phase-matching condition on the fiber’s chromatic dispersion and birefringence, which is particularly sensitive when the fiber is pumped near the zero-dispersion wavelength. MOFs designed to accomplish PMI phase-matching when they are infiltrated with ethanol and pumped at 1064 nm were designed and fabricated. Taking advantage of the large thermo-optic coefficient of ethanol, both chromatic dispersion and birefringence were varied through temperature. Wavelength shifts from 937 nm to 8…
Shallow water rogue wavetrains in nonlinear optical fibers
2013
International audience; In addition to deep-water rogue waves which develop from the modulation instability of an optical CW, wave propagation in optical fibers may also produce shallow water rogue waves. These extreme wave events are generated in the modulationally stable normal dispersion regime. A suitable phase or frequency modulation of a CW laser leads to chirp-free and flat-top pulses or flaticons which exhibit a stable self-similar evolution. Upon collision, flaticons at different carrier frequencies, which may also occur in wavelength division multiplexed transmission systems, merge into a single, high-intensity, temporally and spatially localized rogue pulse.
Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source
2010
International audience; In this work, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. The sources are based on the non-linear compression of an initial beat-signal through a multiple four-wave mixing process taking place into an optical fiber. We experimentally demonstrate real-time monitoring of a 20 GHz pulse source having an integrated phase noise 0.01 radian by phase locking the initial beat note against a reference RF oscillator. Based on this technique, we also experimentally demonstrate a well-separated high-quality 110 fs pulse source having a repetition rate of 2 THz. Finally, we show…