Search results for "Linear optics"
showing 10 items of 493 documents
Modulational instability and generation of self-induced transparency solitons in resonant optical fibers
2009
International audience; We consider continuous-wave propagation through a fiber doped with two-level resonant atoms, which is described by a system of nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) equations. We identify the modulational instability (MI) conditions required for the generation of ultrashort pulses, in cases of both anomalous and normal GVD (group-velocity dispersion). It is shown that the self-induced transparency (SIT) induces non-conventional MI sidebands. The main result is a prediction of the existence of both bright and dark SIT solitons in the anomalous and normal GVD regimes.
Thermodynamic approach of supercontinuum generation
2009
International audience; This paper is aimed at providing an overview on recent theoretical and experimental works in which a thermodynamic description of the incoherent regime of supercontinuum generation has been formulated. On the basis of the wave turbulence theory, we show that this highly nonlinear and quasi-continuous-wave regime of supercontinuum generation is characterized by two different phenomena. (i) A process of optical wave thermalization ruled by the four-wave mixing effects: The spectral broadening inherent to supercontinuum generation is shown to result from the natural tendency of the optical field to reach its thermodynamic equilibrium state, i. e., the state of maximum n…
Diffractive optics for spectral tuning of second harmonic and supercontinuum generated in nonlinear crystals
2011
It is shown that diffractive lenses can tune the spectrum of femtosecond pulses after nonlinear optical processes. We focus on spectra of second-order pulses generated in birefringent crystals and supercontinuum in sapphire crystals. The tunability is achieved by changing the relative distance between the nonlinear crystal and the diffractive lens.
Behaviour of the non-linear optical material KTiOPO4in the temperature range 293-973 K studied by x-ray diffractometry at high resolution: alkaline d…
1999
The crystal structure of potassium titanyl phosphate, KTiOPO4 (space group Pna21), has been refined at room temperature, at 673 K, and at 973 K, by using accurate single-crystal x-ray diffraction techniques at high resolution (dmin = 0.35 A). The data show a large amount of anharmonic motion of the potassium ions, increasing with temperature. To describe this motion, two models are developed: a normal refinement including potassium anharmonic thermal displacement parameters, which describes the average motion of the alkaline sites, and another model in which the potassium sites are split within the harmonic approximation and the displacements of the potassium ions versus temperature are des…
Third-harmonic light polarization control in magnetically resonant silicon metasurfaces
2021
Nonlinear metasurfaces have become prominent tools for controlling and engineering light at the nanoscale. Usually, the polarization of the total generated third harmonic is studied. However, diffraction orders may present different polarizations. Here, we design an high quality factor silicon metasurface for third harmonic generation and perform back focal plane imaging of the diffraction orders, which present a rich variety of polarization states. Our results demonstrate the possibility of tailoring the polarization of the generated nonlinear diffraction orders paving the way to a higher degree of wavefront control.
Spatial soliton formation in photonic crystal fibers
2003
We demonstrate the existence of spatial soliton solutions in photonic crystal fibers (PCF's). These guided localized nonlinear waves appear as a result of the balance between the linear and nonlinear diffraction properties of the inhomogeneous photonic crystal cladding. The spatial soliton is realized self-consistently as the fundamental mode of the effective fiber defined simultaneously by the PCF linear and the self-induced nonlinear refractive indices. It is also shown that the photonic crystal cladding is able to stabilize these solutions, which would be unstable otherwise if the medium was entirely homogeneous.
Elongated push–pull diphenylpolyenes for nonlinear optics: molecular engineering of quadratic and cubic optical nonlinearities via tuning of intramol…
1999
Abstract Push–pull polyenes are of particular interest for nonlinear optics (NLO) as well as model compounds for long-distance intramolecular charge transfer (ICT). In order to tune the ICT phenomenon and control the linear and nonlinear optical properties, we have synthesized and investigated several series of soluble push–pull diphenylpolyenes of increasing length and having various donor (D) and acceptor (A) end groups. Their linear and NLO properties have been studied by performing electro-optical absorption measurements (EOAM) and third-harmonic generation (THG) experiments in solution. Each push–pull molecule exhibits an intense ICT absorption band in the visible characterized by an i…
Organic Materials for Non-Linear Optics: The 2D Approach
1998
Conventional organic molecules for applications in second-order non-linear optics are donor–acceptor substituted π systems that show only one intense charge-transfer (CT) transition. Thus, only a single element of the second-order polarizability tensor, β, is significant in these one-dimensional systems. The advantages and optimization strategies for two new classes of molecules with multiple CT transitions and two-dimensional second-order polarizability are reviewed. These are donor–acceptor substituted π systems that lack a dipole and have a molecular symmetry of C3 or higher, and dipolar molecules of symmetry C2v. A basic introduction to the field is also given.
ChemInform Abstract: Organic Materials for Non-Linear Optics: The 2D Approach
2010
Conventional organic molecules for applications in second-order non-linear optics are donor–acceptor substituted π systems that show only one intense charge-transfer (CT) transition. Thus, only a single element of the second-order polarizability tensor, β, is significant in these one-dimensional systems. The advantages and optimization strategies for two new classes of molecules with multiple CT transitions and two-dimensional second-order polarizability are reviewed. These are donor–acceptor substituted π systems that lack a dipole and have a molecular symmetry of C3 or higher, and dipolar molecules of symmetry C2v. A basic introduction to the field is also given.
Triphenylmethyl and triphenylsilyl based molecular glasses for photonic applications
2015
Triphenylmethyl and triphenylsilyl structural fragments can be used to obtain glass forming, solution processable materials from polar chromophore molecules. Large number of compounds has been synthesized taking advantage of this approach, making it possible to identify some structure-property relations. Regarding the non-linear optical (NLO) properties of the given materials it is evident that triphenylmethyl groups help shielding unwanted NLO efficiency limiting dipolar interactions between polar chromophores in solid films. Chromophore stacking is still observed for compounds with large dipole momentum values. The glass transition temperatures of the compounds increase with the molecular…