Search results for "Lipid metabolism"

showing 10 items of 359 documents

Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model

2016

International audience; The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertrigl…

0301 basic medicineCD36 Antigens[SDV]Life Sciences [q-bio]lcsh:Medicine030204 cardiovascular system & hematologyLipoprotein MetabolismMice0302 clinical medicineIntestinal mucosaHyperinsulinemiaIntestinal Mucosalcsh:ScienceMetabolic Syndromeeducation.field_of_studyMultidisciplinaryIntestinal lipid absorption3. Good healthPostprandialChain Fatty-Acidslipids (amino acids peptides and proteins)Research ArticleNonfasting Triglyceridesmedicine.medical_specialtyPopulationTransportDistal IntestineBiologyDiet High-FatAbsorption03 medical and health sciencesInsulin resistanceInternal medicineHyperinsulinismmedicineAnimalsCholesterol UptakeObesityeducationSecretion[ SDV ] Life Sciences [q-bio]Insulin-Resistancelcsh:RHypertriglyceridemiaLipid metabolismmedicine.diseaseLipid MetabolismDisease Models Animal030104 developmental biologyEndocrinologyGene Expression Regulationlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast

2020

Hyperphosphorylation of protein tau is a hallmark of Alzheimer’s disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altere…

0301 basic medicineCDK5Cèl·lulesTau proteinSit42HyperphosphorylationSaccharomyces cerevisiaeSACCHAROMYCES-CEREVISIAECeramide03 medical and health scienceschemistry.chemical_compoundCell and Developmental Biology0302 clinical medicineInositolceramideYpk1Inositol phosphatelcsh:QH301-705.51-IP7Original Researchchemistry.chemical_classificationScience & TechnologybiologyChemistryKinaseNEURODEGENERATIONLipid metabolismCell BiologyProtein phosphatase 2Fpk1MICROTUBULE-BINDINGPho85SERINE PALMITOYLTRANSFERASECell biologyALZHEIMERS-DISEASE030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesisGLYCOGEN-SYNTHASE KINASE-3-BETAbiology.proteinKINASE-ACTIVITYPhosphorylationLife Sciences & BiomedicineBETA TOXICITYProteïnesDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

Metabolic Profile of Oral Squamous Carcinoma Cell Lines Relies on a Higher Demand of Lipid Metabolism in Metastatic Cells

2017

Tumor cells are subjected to a broad range of selective pressures. As a result of the imposed stress, subpopulations of surviving cells exhibit individual biochemical phenotypes that reflect metabolic reprograming. The present work aimed at investigating metabolic parameters of cells displaying increasing degrees of metastatic potential. The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines derived from human tongue squamous cell carcinoma lineages displaying increasing metastatic potential (SCC9 ZsG, LN1 and LN2) were analyzed by 1H NMR (nuclear magnetic resonance) spectroscopy. Living, intact cells were also examined by the non-invasive method of fluore…

0301 basic medicineCancer ResearchBioenergeticsOxidative phosphorylationlcsh:RC254-28203 medical and health sciences0302 clinical medicinemetastasismetabolic reprogrammingGlycolysisOriginal ResearchChemistryCatabolismLipid metabolismlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenscancer progressionmetabolomicsSquamous carcinomaCell biologyoral squamous cell carcinomanuclear magnetic resonance030104 developmental biologyOncologyCell culture030220 oncology & carcinogenesisNAD+ kinaseFrontiers in Oncology
researchProduct

Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification

2016

Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de n…

0301 basic medicineCancer ResearchProgrammed cell deathCardiolipinsMitochondrionCell Line03 medical and health scienceschemistry.chemical_compoundSDG 3 - Good Health and Well-beingBetulinic acidGeneticsCardiolipinHumansBetulinic AcidCytotoxicityMolecular BiologyCell DeathbiologyCytochrome cFatty AcidsCytochromes cLipid metabolismAntineoplastic Agents PhytogenicTriterpenesMitochondriaCell biology030104 developmental biologyBiochemistrychemistryCancer cellbiology.protein/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingPentacyclic TriterpenesStearoyl-CoA Desaturase
researchProduct

Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Pheno…

2016

Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 'alveolar' cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII ce…

0301 basic medicineCellular differentiationCell Culture Techniqueslcsh:MedicineGene ExpressionPolymerase Chain ReactionBiochemistry0302 clinical medicineAnimal ProductsMedicine and Health SciencesCell Cycle and Cell Divisionlcsh:ScienceOligonucleotide Array Sequence Analysiseducation.field_of_studyMultidisciplinaryCell CycleCell DifferentiationAgricultureCell cyclerespiratory systemLipidsCell biologyPhenotypeCell Processes030220 oncology & carcinogenesisStem cellResearch ArticleMeatPopulationBiology03 medical and health sciencesExtraction techniquesMicroscopy Electron TransmissionGeneticsHumansGene RegulationeducationNutritionA549 celllcsh:RBiology and Life SciencesCell BiologyLipid MetabolismRNA extractionHamDietResearch and analysis methods030104 developmental biologyMetabolismGene Expression RegulationCell cultureA549 CellsFoodAlveolar Epithelial CellsCancer celllcsh:QImmortalised cell lineDevelopmental BiologyPloS one
researchProduct

A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration

2017

[EN] Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdapl gene. In order to get an overview about the c…

0301 basic medicineCharcot-Marie-Toothmedicine.medical_treatmentNerve Tissue ProteinsGDAP1MitochondrionBiologymedicine.disease_cause03 medical and health sciencesCharcot-Marie-Tooth DiseaseRNA interferenceGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARmedicineAnimalsDrosophila ProteinsHumansInsulinMolecular BiologyGeneticsMechanism (biology)InsulinNeurodegenerationLipid Metabolismmedicine.diseaseUp-RegulationMitochondriaCell biology030104 developmental biologyMetabolomeCarbohydrate MetabolismMolecular MedicineDrosophilaRNA InterferenceOxidative stressFunction (biology)Signal TransductionBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis

2016

Only a few in vitro assays have been proposed to evaluate the steatotic potential of new drugs. The present study examines the utility of HepaRG cells as a cell-based assay system for screening drug-induced liver steatosis. A high-content screening assay was run to evaluate multiple toxicity-related cell parameters in HepaRG cells exposed to 28 compounds, including drugs reported to cause steatosis through different mechanisms and non-steatotic compounds. Lipid content was the most sensitive parameter for all the steatotic drugs, whereas no effects on lipid levels were produced by non-steatotic compounds. Apart from fat accumulation, increased ROS production and altered mitochondrial membra…

0301 basic medicineDrugDrug-Related Side Effects and Adverse Reactionsmedia_common.quotation_subjectCellDrug Evaluation PreclinicalBiologyPharmacologyToxicology03 medical and health sciencesCell Line TumormedicineHumansTranscription factormedia_commonPharmacologyMembrane potentialFatty liverIn vitro toxicologyLipid metabolismLipid Metabolismmedicine.diseaseFatty Liver030104 developmental biologymedicine.anatomical_structureSteatosisToxicology and Applied Pharmacology
researchProduct

A Multi-Parametric Fluorescent Assay for the Screening and Mechanistic Study of Drug-Induced Steatosis in Liver Cells in Culture.

2017

Human hepatic cells have been used for drug safety risk evaluations throughout early development phases. They provide rapid, cost-effective early feedback to identify drug candidates with potential hepatotoxicity. This unit presents a cell-based assay to evaluate the risk of liver damage associated with steatogenic drugs. Detailed protocols for cell exposure to test compounds and for the assessment of steatosis-related cell parameters (intracellular lipid content, reactive oxygen species production, mitochondrial impairment, and cell death) are provided. A few representative results that illustrate the utility of this procedure for the screening of drug-induced steatosis are shown. © 2017 b…

0301 basic medicineDrugProgrammed cell deathmedia_common.quotation_subjectCellMitochondria LiverBiologyToxicology03 medical and health sciencesmedicineHumansCells Culturedmedia_commonchemistry.chemical_classificationReactive oxygen speciesCell Deathmedicine.diseaseLipid MetabolismFatty Liver030104 developmental biologymedicine.anatomical_structurechemistryBiochemistryLiverHigh-content screeningCancer researchHepatic stellate cellHepatocytesSteatosisChemical and Drug Induced Liver InjuryReactive Oxygen SpeciesIntracellularCurrent protocols in toxicologyLiterature Cited
researchProduct

Nutraceuticals as an Important Part of Combination Therapy in Dyslipidaemia

2017

Several risk factors such as abnormality of lipid metabolism (e.g. high levels of low-density lipoprotein cholesterol (LDL-C), elevated triglycerides and low levels of high-density lipoprotein cholesterol (HDL-C)) play a central role in the aetiology of cardiovascular disease (CVD). Nutraceutical combination together with a cholesterol- lowering action, when associated with suitable lifestyle, should furnish an alternative to pharmacotherapy in patients reporting statin-intolerance and in subjects at low cardiovascular risk. The present review is focused on nutraceuticals and their synergetic combinations demonstrating a beneficial effect in the management of dyslipidaemia. Several nutraceu…

0301 basic medicineDyslipidaemiaCombination therapyLow density lipoprotein cholesterol030204 cardiovascular system & hematologyReductaseBiologyPharmacology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineNutraceuticalBerberineDrug DiscoverymedicineRed yeast riceHumansEndothelial dysfunctionEndothelial dysfunctionDyslipidemiasCarotidDietary SupplementPharmacologyCholesterolLipid metabolismLipidCardiovascular riskmedicine.diseaseLipidsIntima media thickne030104 developmental biologyDyslipidemiachemistryDietary SupplementsDrug Therapy Combinationlipids (amino acids peptides and proteins)NutraceuticalHumanCurrent Pharmaceutical Design
researchProduct

A Pharmacological Update of Ellagic Acid.

2018

Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0633-9492.pdf This is a pre-print of an article published in Ríos, JL., Giner, RM., Marín, M. and Recio, MC. (2018). A pharmacological update of ellagic acid. Planta Medica, vol. 84, n. 15, pp. 1068-1093. The final authenticated version is available online at: https://doi.org/10.1055/a-0633-9492 Este es el pre-print del siguiente artículo Ríos, JL., Giner, RM., Marín, M. and Recio, MC. (2018). A pharmacological update of ellagic acid. Planta Medica, vol. 84, n. 15, pp. 1068-1093 que se ha publicado de forma definitiva en https://doi.org/10…

0301 basic medicineEllagic acid - Pharmacokinetics.Antioxidantmedicine.medical_treatmentMetaboliteInterleukin-1betaAnti-Inflammatory AgentsPharmaceutical ScienceApoptosisPharmacologyProtective AgentsProteína quinasa.NeuroprotectionAntioxidantsAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEllagic AcidGlycationDrug DiscoverymedicineHumansProtein kinases.Cell ProliferationPharmacologyMetabolic SyndromeAldose reductaseInterleukin-6Tumor Necrosis Factor-alphaMetabolismo - Trastornos.Organic ChemistryNF-kappa BLipid metabolismAtherosclerosisEllagic acid - Physiological effect.NeuroprotectionMetabolism disorder030104 developmental biologyComplementary and alternative medicinechemistryÁcido elágico - Efectos fisiológicos.Antioxidantes.Ácido elágico - Farmacocinética.030220 oncology & carcinogenesisMolecular MedicineMetabolism - Disorders.Antioxidants.Ellagic acidPlanta medica
researchProduct