Search results for "Locator"

showing 10 items of 60 documents

Movements of water rails from Norway-tracks

2020

Lislevand T, Hahn S, Rislaa S, Briedis M. 2020. First records of complete annual cycles in water rails Rallus aquaticus show evidence of itinerant breeding and a complex migration system. J Avian Biol. doi:10.1111/jav.02595

avian migrationmigration ecologywinteringgeolocatorwater railsincubationwetland birdslight-level loggerRallus aquaticusanimal movementanimal tracking
researchProduct

Common Rosefinch migration along the Indo-European Flyway-reference-data

2021

Lisovski S, Neumann R, Albrecht T, Munclinger P, Ahola M, Bauer S, Cepak J, Fransson T, Jakobsson S, Jaakkonen T, Klvana P, Kullberg C, Laaksonen T, Metzger B, Piha M, Shurulinkov P, Stach R, Strom K, Velmala W, Briedis M. 2021. The Indo-European Flyway: opportunities and constraints reflected by common rosefinches breeding across Europe. J Biogeogr. doi:10.1111/jbi.14085

common rosefinchavian migrationIndo-European FlywaygeolocatorCarpodacus erythrinuslight-level loggeranimal movementanimal tracking
researchProduct

Global distributions of diazotrophs abundance and biomass - Depth integrated values computed from a collection of source datasets - Contribution to t…

2013

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedente…

Go-Flo bottlesSalinityCAIBEX-IRV Kilo MoanaDiazotrophs total biomass as carbonUniform resource locator link to source data fileNitrateRichelia carbon per cellCTD/RosetteLatitude of eventNiskinRoger A RevelleTemperature waterCalculatedtop minbiomass as carbonTrichodesmium biomass as carbontotalbottom maxCTD Seabirdareal concentrationMultiple investigationsTemperatureDepth top/minRichelia abundance cellsCTD RosetteSeabirdCalothrixRoger A. RevelleTrichodesmiumTrichodesmium carbon per trichomeEarth System ResearchRichelia abundanceCAIBEX-IICalothrix abundanceMARine Ecosystem Model Intercomparison Project MAREMIPDiazotrophsLongitude of eventRichelia associated speciesSample methodIronChlorophyll total areal concentrationBottle NiskinwaterTrichodesmium abundance free trichomesMARine Ecosystem Model Intercomparison Project (MAREMIP)PhosphateSarmiento de GamboaSample commentCAIBOXUniform resource locator/link to source data filetotal biomass as carbonCalothrix carbon per cellHeterocyst biomassGo Flo bottlescoloniesDate/Time of eventChlorophyll totalTrichodesmium abundance totalRicheliaDEPTH waterTrichodesmium abundance coloniesMP-6biomassBottleDepthEvent labelDate Time of eventCAIBEX IIcarbon per cellMeasured at sea surfacefree trichomesMP-9CTDCalothrix abundance cellscarbon per trichomeTrichodesmium abundanceCalothrix associated speciesMP 9MP 6CAIBEX IcellsDepth bottom/maxassociated speciesHeterocyst
researchProduct

Seawater carbonate chemistry and nest guarding behaviour of a temperate wrasse

2021

Organisms may respond to changing environmental conditions by adjusting their behaviour (i.e., behavioural plasticity). Ocean acidification (OA), resulting from anthropogenic emissions of carbon dioxide (CO2), is predicted to impair sensory function and behaviour of fish. However, reproductive behaviours, and parental care in particular, and their role in mediating responses to OA are presently overlooked. Here, we assessed whether the nesting male ocellated wrasse Symphodus ocellatus from sites with different CO2 concentrations showed different behaviours during their breeding season. We also investigated potential re-allocation of the time-budget towards different behavioural activities b…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationPotentiometric titrationRegistration number of speciesSalinityTemperateCalcite saturation statePotentiometricinorganicwaterAlkalinitySiteTemperature waterCarbon inorganic dissolvedUniform resource locator/link to referenceCalculated using seacarb after Nisumaa et al 2010Mediterranean SeaOcean Acidification International Coordination Centre OA ICCAnimaliaAragonite saturation stateBehaviourBicarbonate ionTime in secondsTypeNektonAlkalinity totalChordataCalculated using seacarb after Nisumaa et al. (2010)totalCO2 ventSpeciespHPelagosSymphodus ocellatusTemperatureCarbonate system computation flagdissolvedFugacity of carbon dioxide (water) at sea surface temperature (wet air)Carbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideSingle speciesEarth System ResearchFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfField observationUniform resource locator link to reference
researchProduct

Seawater carbonate chemistry and shell mineralogy, microstructure, and mechanical strength of four Mediterranean gastropod species near a CO2 seep

2017

Marine CO2 seeps allow the study of the long-term effects of elevated pCO2 (ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO2 seep off Vulcano Island, Italy. The three sites represented ambient (8.15 pH), moderate (8.03 pH) and low (7.73 pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased sign…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationRegistration number of speciesSalinityTemperateinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalSalinity standard errorPatella caeruleatotalCO2 ventpHCalciteTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorEarth System ResearchField observationUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLengthLocationPotentiometricwaterGrowth MorphologyHexaplex trunculusAlkalinity total standard errorBenthosUniform resource locator/link to referenceOsilinus turbinatusOther studied parameter or processMediterranean SeaOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)ForceSpeciespH standard errorCalculated using CO2SYSCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonElasticityTreatmentAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airAragoniteCarbon dioxideMolluscaGrowth/MorphologySingle speciesBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airPatella rusticaToughnessCoast and continental shelf
researchProduct

Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation

2017

Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation into the shells would increase if bivalves rely on the exchange of Na+/H+ to maintain homeostasis for shell formation, thereby shedding new light on the acid-base and ionic regulation at the calcifying front. Here, we investigated the combined effects of seawater pH (8.1, 7.7 and 7.4) and temperature (16 and 22 °C) on the growth and sodium composition of the shells of the blue mussel, Mytilus edul…

Ocean Acidification International Coordination Centre (OA-ICC)Registration number of speciesSalinityTemperateMytilus edulisinorganicAlkalinityGrowth rate standard deviationSodium/Calcium ratioExperimentPatinopecten yessoensisTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificAlkalinity totalSalinity standard errortotalSodium Calcium ratiopHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorContainers and aquaria 20 1000 L or 1 m 2Earth System ResearchContainers and aquaria (20-1000 L or &lt; 1 m**2)standard deviationUniform resource locator link to referenceCalcification/DissolutionPotentiometric titrationCalcite saturation statewaterGrowth MorphologyContainers and aquaria (20-1000 L or < 1 m**2)Alkalinity total standard errorBenthosUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorGrowth rateCalculated using CO2SYSEvent labelCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesCalcification DissolutionBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf
researchProduct

Individual and population-level responses to ocean acidification

2016

Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the pr…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityinorganicBottles or small containers/Aquaria (<20 L)AlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenBottles or small containers Aquaria 20 LAlkalinity totalSalinity standard errortotalCO2 ventpHRespirationTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorCarbon inorganic dissolved standard errorRespiration rateEarth System ResearchSexUniform resource locator link to referencePotentiometric titrationCalcite saturation stateDry masswaterSiteHexaplex trunculusBenthosAlkalinity total standard errorUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciesWet massBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsBiomass Abundance Elemental compositionCoast and continental shelfoxygen
researchProduct

Movements of water rails from Norway-light-levels

2020

Lislevand T, Hahn S, Rislaa S, Briedis M. 2020. First records of complete annual cycles in water rails Rallus aquaticus show evidence of itinerant breeding and a complex migration system. J Avian Biol. doi:10.1111/jav.02595

avian migrationmigration ecologywinteringgeolocatorwater railsincubationwetland birdslight-level loggerRallus aquaticusanimal movementanimal tracking
researchProduct

Mapping the global distribution of the freshwater hydrozoan Craspedacusta sowerbii

2021

The invasive freshwater jellyfish Craspedacusta sowerbii (Limnomedusae, Olindiidae) is native to East Asia and since the end of the 19th century, was observed in Europe, then in North America, and across the globe. In recent decades, reports of C. sowerbii have drastically increased in Europe, North and South America, Australia, Asia, and parts of Africa. However, the worldwide distribution of C. sowerbii remains poorly documented due to the lack of information in various aquatic environments. This dataset globalises the occurrences of this species from an extensive literature review and database review. Information extracted from the literature/database were organised and synthesised accor…

SpeciesIdentificationReference sourceLocationSiteCountryHabitatContinentUniform resource locator/link to referenceLATITUDEEarth System ResearchYear of observationELEVATIONLONGITUDEUniform resource locator link to referenceReference/sourceglobal compilation
researchProduct

Seawater carbonate chemistry and percentage cover of macroalgal species at three locations at Vulcano, Italy

2017

Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (delta 13C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. Th…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityCaulerpa proliferaCommunity composition and diversityBicarbonate ion standard deviationUdotea petiolatainorganicAlkalinity total standard deviationAlkalinitySargassum muticumDictyota dichotomaHalopteris scopariaYearsCystoseira brachycarpaExperimentTemperature waterCarbon inorganic dissolvedCystoseira foeniculaceaCaulerpa racemosaCalculated using seacarb after Nisumaa et al 2010Cystoseira foeniculataAragonite saturation stateAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Acetabularia acetabulumJania rubensCarbon dioxide standard deviationEarth System Researchδ13CLipid contentstandard deviationField observationUniform resource locator link to referenceCystoseira crinitaCoverageCalcite saturation stateLocationwaterSiteRocky-shore communityFigureBenthosUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationTypeBicarbonate ionDictyopteris polypodioidesDilophus fasciolaCalculated using seacarb after Nisumaa et al. (2010)SpeciesCystoseira compressaEvent labelCarbonate system computation flagpH standard deviationCarbonate ion standard deviationMassFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airPadina pavonicaSeasonδ13C standard deviationCoast and continental shelfCodium bursaTableCystoseira barbarta
researchProduct