Search results for "Loci"

showing 10 items of 1277 documents

In Silico Shear and Intramural Stresses are Linked to Aortic Valve Morphology in Dilated Ascending Aorta

2017

Objective/Background: The development of ascending aortic dilatation in patients with bicuspid aortic valve (BAV) is highly variable, and this makes surgical decision strategies particularly challenging. The purpose of this study was to identify new predictors, other than the well established aortic size, that may help to stratify the risk of aortic dilatation in BAV patients.Methods: Using fluid-structure interaction analysis, both haemodynamic and structural parameters exerted on the ascending aortic wall of patients with either BAV ( n = 21) or tricuspid aortic valve (TAV; n = 13) with comparable age and aortic diameter (42.7 +/- 5.3 mm for BAV and 45.4 +/- 10.0 mm for TAV) were compared…

Aortic valveMalePatient-Specific ModelingComputed Tomography AngiographyHeart Valve DiseasesHemodynamics02 engineering and technology030204 cardiovascular system & hematology0302 clinical medicineBicuspid aortic valveBicuspid Aortic Valve DiseaseRisk FactorsAortaSinotubular JunctionModels CardiovascularSettore ING-IND/34 - Bioingegneria IndustrialeComputational modelingAneurysm of ascending aortaMiddle AgedAortic AneurysmHeart Valve Diseasemedicine.anatomical_structureAortic Valvecardiovascular systemCardiologyWall shear streFemaleCardiology and Cardiovascular MedicineBlood Flow VelocityDilatation PathologicHumanmedicine.medical_specialtyBicuspid aortic valve0206 medical engineeringAortography03 medical and health sciencesInternal medicinemedicine.arteryAscending aortamedicineHumansAgedAortabusiness.industryRisk FactorSignificant differenceHemodynamicsmedicine.disease020601 biomedical engineeringAortic wallRegional Blood FlowSurgeryStress Mechanicalbusiness
researchProduct

Influence of the metabolic syndrome on aortic stiffness in never treated hypertensive patients

2004

Summary Background and aim Metabolic syndrome (MS) carries an increased risk for cardiovascular events and there is a growing awareness that large artery stiffening is a powerful predictor of cardiovascular morbidity and mortality. Little is known about the relationship of MS with aortic stiffness. The aim of our study was to analyze, in patients with essential hypertension, the influence of MS, defined according to the criteria proposed by the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (NCEP-ATP III), on carotid–femoral pulse wave velocity (PWV), a measure of aortic stiffness. Methods N…

Arterial hypertensionAdultMalemedicine.medical_specialtySettore MED/09 - Medicina InternaAmbulatory blood pressureEndocrinology Diabetes and MetabolismMedicine (miscellaneous)Essential hypertensionRisk FactorsInternal medicineDiabetes mellitusmedicineAlbuminuriaHumansPulse wave velocityNational Cholesterol Education ProgramAortaMetabolic SyndromeNutrition and Dieteticsbusiness.industryAge FactorsBlood Pressure Monitoring AmbulatoryMiddle AgedCardiovascular riskmedicine.diseaseSettore MED/11 - Malattie Dell'Apparato CardiovascolareElasticityFemoral ArteryPulse wave velocityAortic stiffneCarotid ArteriesBlood pressureEndocrinologyDiabetes Mellitus Type 2Blood chemistryCase-Control StudiesHypertensionCardiologyRegression AnalysisFemaleMetabolic syndromeCardiology and Cardiovascular MedicinebusinessNutrition, Metabolism and Cardiovascular Diseases
researchProduct

Finite-Time Control for Attitude Tracking Maneuver of Rigid Satellite

2014

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/302982 Open Access The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is prov…

Article Subjectbusiness.industrymedia_common.quotation_subjectApplied Mathematicslcsh:MathematicsTracking systemAngular velocityAnalysis; Applied MathematicsInertiaTracking (particle physics)lcsh:QA1-939Sliding mode controlUpper and lower boundsVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Sylvester's law of inertiaControl theorybusinessAnalysisMathematicsmedia_commonAbstract and Applied Analysis
researchProduct

Non-linear evolution of the cosmic neutrino background

2012

We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference Lambda CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10(11) – 10(15) h(-1) M-circle dot, over a redshift range z = 0 – 2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino proper…

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark mattercosmological neutrinosFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesMomentumSettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesPeculiar velocity010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsneutrino propertiesPhysicsCosmologia010308 nuclear & particles physicsHalo mass functionAstronomy and Astrophysicsneutrino masses from cosmologyRedshiftCosmic neutrino background13. Climate actionHigh Energy Physics::ExperimentHaloNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

2017

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…

AstrofísicaGravitacióneutron star: binaryclose [binaries]Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]BATSE OBSERVATIONSgamma-ray burst: generalEQUIVALENCE PRINCIPLEEXTENDED EMISSIONastro-ph.HE; astro-ph.HEAstrophysicsKilonovageneral [gamma-ray burst]01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologyphoton: velocityPROMPT EMISSIONLIGOclose gamma-ray burst: general gravitational waves [binaries]gravitational wave010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BURST SPECTRAQCQBPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)binaries: closeGRBEQUATION-OF-STATEviolation: Lorentzgamma ray: emissiongravitational wavesAstrophysics - High Energy Astrophysical PhenomenaGWradiation: electromagneticAfterglow Light CurvesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstinvariance: LorentzGW GRB LIGO Virgo Fermi BNSGLASTOptical Afterglows0103 physical sciencesgamma ray: detectorBinaries: close; gamma-ray burst: general; gravitational wavesSTFCFermi010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKAstronomy and AstrophysicsAstronomy and Astrophysictime delaysensitivityShapiro delayLIGORedshiftNeutron starVIRGOPhysics and AstronomyHOST GALAXYCPT VIOLATION13. Climate actiongravitationSpace and Planetary ScienceLUMINOSITY FUNCTIONVIEWING ANGLEbinaries: close; gamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceBNSspectrometerGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]redshift: measuredFermi Gamma-ray Space TelescopeAstrophysical Journal Letters
researchProduct

GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass

2017

Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): ${M_{\rm max}^{\rm sph}}\lesssim 2.74/\beta$, where $\beta$ is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow $\beta$ to be as high as $1.27$, while most realistic candidate equations of state predict $\beta$ to be closer to $1.2$, yielding ${M_{\rm max}^{\rm sph}}$ in the range $2.16…

AstrofísicaStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyArticleInterpretation (model theory)Causality (physics)Quantum mechanics0103 physical sciencesBeta (velocity)Limit (mathematics)Magnetohydrodynamic drive010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMathematical physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsNeutron starAstronomiaMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Activity and accretion in {gamma} Vel and Cha I

2015

We use the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of Gamma Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 Gamma Vel members and 74 Cha I members were studied. The procedure adopted by the GES to derive stellar fundamental parameters provided also measures of the projected rotational velocity (vsini). We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotati…

Astrophysics and AstronomyRadial velocityAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsobservational astronomyOpen star clustersPre main sequence starsExoplanet AstronomyStellar AstronomyAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsNatural SciencesPre-main sequence starsLine intensitiesAstrophysics::Galaxy Astrophysics
researchProduct

VLT/Flames spectroscopic data of NGC 6530

2007

Mechanisms regulating the evolution of pre-main sequence stars can be understood by studying stellar properties such as rotation, disk accretion, internal mixing and binarity. To investigate such properties, we studied a sample of 332 candidate members of the massive and populous star forming region NGC 6530. We want to select cluster members by using different membership criteria, to study the properties of pre-main sequence stars with or without circumstellar disks. We use intermediate resolution spectra including the LiI6707.8{AA} line to derive radial and rotational velocities, binarity and to measure the Equivalent Width of the lithium line; these results are combined with X-ray data t…

Astrophysics and AstronomyRadial velocityPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsobservational astronomyOpen star clustersPre main sequence starsExoplanet AstronomyStellar AstronomyAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsNatural SciencesPre-main sequence starsAstrophysics::Galaxy AstrophysicsSpectroscopy
researchProduct

Abundance signature of M dwarf stars

2020

Most of our current knowledge on planet formation is still based on the analysis of main-sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M-dwarf planet hosts are still missing. We aim to test whether the correlations between the metallicity, individual chemical abundances, and mass of the star and the presence of different type of planets found for FGK stars still holds for the less massive M dwarf stars. Methods to determine in a consistent way stellar abundances of M dwarfs from high-resolution optical spectra are still missing. The present work is a first attempt to fill this gap. We analyse in a coherent and homogeneous way a large sample of M dwarf…

Astrophysics and AstronomyRadial velocityPhysicsExoplanetsChemical abundancesexoplanet astronomyAstrophysics::Cosmology and Extragalactic AstrophysicsLate type starsstellar astronomyInterdisciplinary Astronomyobservational astronomyM starsMetallicityAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsNatural SciencesLate-type starsAstrophysics::Galaxy AstrophysicsSpectroscopy
researchProduct

RadioAstron reveals a spine-sheath jet structure in 3C 273

2021

We present Space-VLBI RadioAstron observations at 1.6 GHz and 4.8 GHz of the flat spectrum radio quasar 3C 273, with detections on baselines up to 4.5 and 3.3 Earth Diameters, respectively. Achieving the best angular resolution at 1.6 GHz to date, we have imaged limb-brightening in the jet, not previously detected in this source. In contrast, at 4.8 GHz, we detected emission from a central stream of plasma, with a spatial distribution complementary to the limb-brightened emission, indicating an origin in the spine of the jet. While a stratification across the jet width in the flow density, internal energy, magnetic field, or bulk flow velocity are usually invoked to explain the limb-brighte…

Astrophysics::High Energy Astrophysical PhenomenaStratification (water)FOS: Physical sciencesJets [Galaxies]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesQuasars: individual: 3C 2730103 physical sciencesAngular resolution010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsJet (fluid)Internal energy010308 nuclear & particles physicsAstronomy and AstrophysicsQuasarPlasmaGalaxies: activeAstrophysics - Astrophysics of GalaxiesActive [Galaxies]Magnetic fieldFlow velocitySpace and Planetary ScienceGalaxies: jetsAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsIndividual: 3C 273 [Quasars]
researchProduct