Search results for "Long baseline"
showing 10 items of 40 documents
Absolute kinematics of radio source components in the complete S5 polar cap sample
2004
We observed the thirteen extragalactic radio sources of the complete S5 polar cap sample at 15.4 GHz with the Very Long Baseline Array, on 27 July 1999 (1999.57) and 15 June 2000 (2000.46). We present the maps from those two epochs, along with maps obtained from observations of the 2 cm VLBA survey for some of the sources of the sample, making a total of 40 maps. We discuss the apparent morphological changes displayed by the radio sources between the observing epochs. Our VLBA observations correspond to the first two epochs at 15.4 GHz of a program to study the absolute kinematics of the radio source components of the members of the sample, by means of phase delay astrometry at 8.4 GHz, 15.…
Changes in the trajectory of the radio jet in 0735+178?
2001
We present multi-epoch 8.4 and 43 GHz Very Long Baseline Array images of the BL Lac object 0735+178. The images confirm the presence of a twisted jet with two sharp apparent bends of 90$^{\circ}$ within two milliarcseconds of the core, resembling a helix in projection. The observed twisted geometry could be the result of precession of the jet inlet, but is more likely produced by pressure gradients in the external medium through which the jet propagates. Quasi-stationary components are observed at the locations of the 90$^{\circ}$ bends, possibly produced by differential Doppler boosting. Identification of components across epochs, since the earliest VLBI observations of this source in 1979…
THE ACCELERATING JET OF 3C 279
2012
Analysis of the proper motions of the subparsec scale jet of the quasar 3C 279 at 15 GHz with the Very Long Baseline Array shows significant accelerations in four of nine superluminal features. Analysis of these motions is combined with the analysis of flux density light curves to constrain values of Lorentz factor and viewing angle (and their derivatives) for each component. The data for each of these components are consistent with significant changes to the Lorentz factor, viewing angle, and azimuthal angle, suggesting jet bending with changes in speed. We see that for these observed components Lorentz factors are in the range Γ = 10-41, viewing angles are in the range = 0.°1-5.°0, and in…
Millimeter VLBI of NGC 1052: Dynamics
2016
The LINER galaxy NGC 1052 is an ideal target to study the innermost regions of active galactic nuclei (AGN), given its close distance of about 20 Mpc. The source was observed at 29 epochs from 2005 to 2009 with the Very Long Baseline Array (VLBA) at 43 GHz. Here, we present a kinematic study of its twin-jet system from a subset of 9 epochs at 43 GHz carried out in 2005 and 2006, finding a bright central feature as the dynamic center. The resulting mean velocities of β = v / c = 0 . 46 ± 0 . 08 and β = 0 . 69 ± 0 . 02 for the western and eastern jet, respectively, give hints towards higher velocities in the eastern jet.
The kinematics of water masers in the stellar molecular outflow source, IRAS 19134+2131
2004
Using the Very Large Array (VLA) and the Very Long Baseline Array (VLBA), we have observed water maser emission in the proto-planetary nebula candidate IRAS 19134+2131, in which the water maser spectrum has two groups of emission features separated in radial velocity by ∼100 km s^−1. The blue-shifted and red-shifted clusters of maser features are clearly separated spatially by ∼150 mas, indicative of a fast collimated flow. However, not all of the maser features are aligned along the axis of the flow, as is seen in the similar high-velocity water maser source, W43A. Comparing the VLA and VLBA maps of the water maser source, we find 4 maser features that were active for 2 years. Using only V…
Volume III. DUNE far detector technical coordination
2020
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…
Volume IV The DUNE far detector single-phase technology
2020
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
The Potsdam Open Source Radio Interferometry Tool (PORT)
2021
The Potsdam Open Source Radio Interferometry Tool (PORT) is the very long baseline interferometry (VLBI) analysis software developed and maintained at the GFZ German Research Centre for Geosciences. Chiefly, PORT is tasked with the timely processing of VLBI sessions and post-processing activities supporting the generation of celestial and terrestrial reference frames. In addition, it serves as a framework for research and development within the GFZ's VLBI working group and is part of the tool set employed in educating young researchers. Starting out from VLBI group delays, PORT estimates station and radio sources positions, as well as Earth orientation parameters, tropospheric parameters, a…
Volume I. Introduction to DUNE
2020
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
Pinpointing the SMBH in NGC1052
2016
Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on Blandford & Znajek (1977MNRAS.179..433B) extract the rotational energy from a Kerr black hole, which could be the case for NGC1052, to launch these jets. This requires magnetic fields on the order of 1000G to 10000G. We imaged the vicinity of the SMBH of the AGN NGC1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie betwe…